How variability shapes learning and generalization

L Raviv, G Lupyan, SC Green - Trends in cognitive sciences, 2022 - cell.com
Learning is using past experiences to inform new behaviors and actions. Because all
experiences are unique, learning always requires some generalization. An effective way of …

Inductive biases for deep learning of higher-level cognition

A Goyal, Y Bengio - Proceedings of the Royal Society A, 2022 - royalsocietypublishing.org
A fascinating hypothesis is that human and animal intelligence could be explained by a few
principles (rather than an encyclopaedic list of heuristics). If that hypothesis was correct, we …

Using cognitive psychology to understand GPT-3

M Binz, E Schulz - Proceedings of the National Academy of …, 2023 - National Acad Sciences
We study GPT-3, a recent large language model, using tools from cognitive psychology.
More specifically, we assess GPT-3's decision-making, information search, deliberation, and …

Human-like systematic generalization through a meta-learning neural network

BM Lake, M Baroni - Nature, 2023 - nature.com
The power of human language and thought arises from systematic compositionality—the
algebraic ability to understand and produce novel combinations from known components …

Guiding pretraining in reinforcement learning with large language models

Y Du, O Watkins, Z Wang, C Colas… - International …, 2023 - proceedings.mlr.press
Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped
reward function. Intrinsically motivated exploration methods address this limitation by …

A survey of zero-shot generalisation in deep reinforcement learning

R Kirk, A Zhang, E Grefenstette, T Rocktäschel - Journal of Artificial …, 2023 - jair.org
The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to
produce RL algorithms whose policies generalise well to novel unseen situations at …

Learning transferable visual models from natural language supervision

A Radford, JW Kim, C Hallacy… - International …, 2021 - proceedings.mlr.press
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined
object categories. This restricted form of supervision limits their generality and usability since …

On the binding problem in artificial neural networks

K Greff, S Van Steenkiste, J Schmidhuber - arXiv preprint arXiv …, 2020 - arxiv.org
Contemporary neural networks still fall short of human-level generalization, which extends
far beyond our direct experiences. In this paper, we argue that the underlying cause for this …

Towards principled disentanglement for domain generalization

H Zhang, YF Zhang, W Liu, A Weller… - Proceedings of the …, 2022 - openaccess.thecvf.com
A fundamental challenge for machine learning models is generalizing to out-of-distribution
(OOD) data, in part due to spurious correlations. To tackle this challenge, we first formalize …

Abstraction and analogy‐making in artificial intelligence

M Mitchell - Annals of the New York Academy of Sciences, 2021 - Wiley Online Library
Conceptual abstraction and analogy‐making are key abilities underlying humans' abilities to
learn, reason, and robustly adapt their knowledge to new domains. Despite a long history of …