[HTML][HTML] Deep learning for chest X-ray analysis: A survey

E Çallı, E Sogancioglu, B van Ginneken… - Medical Image …, 2021 - Elsevier
Recent advances in deep learning have led to a promising performance in many medical
image analysis tasks. As the most commonly performed radiological exam, chest …

A brief survey on semantic segmentation with deep learning

S Hao, Y Zhou, Y Guo - Neurocomputing, 2020 - Elsevier
Semantic segmentation is a challenging task in computer vision. In recent years, the
performance of semantic segmentation has been greatly improved by using deep learning …

Multi-class token transformer for weakly supervised semantic segmentation

L Xu, W Ouyang, M Bennamoun… - Proceedings of the …, 2022 - openaccess.thecvf.com
This paper proposes a new transformer-based framework to learn class-specific object
localization maps as pseudo labels for weakly supervised semantic segmentation (WSSS) …

Learning affinity from attention: End-to-end weakly-supervised semantic segmentation with transformers

L Ru, Y Zhan, B Yu, B Du - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Weakly-supervised semantic segmentation (WSSS) with image-level labels is an important
and challenging task. Due to the high training efficiency, end-to-end solutions for WSSS …

Token contrast for weakly-supervised semantic segmentation

L Ru, H Zheng, Y Zhan, B Du - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Abstract Weakly-Supervised Semantic Segmentation (WSSS) using image-level labels
typically utilizes Class Activation Map (CAM) to generate the pseudo labels. Limited by the …

Layercam: Exploring hierarchical class activation maps for localization

PT Jiang, CB Zhang, Q Hou… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
The class activation maps are generated from the final convolutional layer of CNN. They can
highlight discriminative object regions for the class of interest. These discovered object …

Clip is also an efficient segmenter: A text-driven approach for weakly supervised semantic segmentation

Y Lin, M Chen, W Wang, B Wu, K Li… - Proceedings of the …, 2023 - openaccess.thecvf.com
Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging
task. Mainstream approaches follow a multi-stage framework and suffer from high training …

Class re-activation maps for weakly-supervised semantic segmentation

Z Chen, T Wang, X Wu, XS Hua… - Proceedings of the …, 2022 - openaccess.thecvf.com
Extracting class activation maps (CAM) is arguably the most standard step of generating
pseudo masks for weakly-supervised semantic segmentation (WSSS). Yet, we find that the …

Regional semantic contrast and aggregation for weakly supervised semantic segmentation

T Zhou, M Zhang, F Zhao, J Li - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Learning semantic segmentation from weakly-labeled (eg, image tags only) data is
challenging since it is hard to infer dense object regions from sparse semantic tags. Despite …

L2g: A simple local-to-global knowledge transfer framework for weakly supervised semantic segmentation

PT Jiang, Y Yang, Q Hou, Y Wei - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Mining precise class-aware attention maps, aka, class activation maps, is essential for
weakly supervised semantic segmentation. In this paper, we present L2G, a simple online …