Predicting airborne pollutant concentrations and events in a commercial building using low-cost pollutant sensors and machine learning: A case study

A Mohammadshirazi, VA Kalkhorani, J Humes… - Building and …, 2022 - Elsevier
Prediction of indoor airborne pollutant concentrations can enable a smart indoor air quality
control strategy that potentially reduces building energy use and improves occupant comfort …

Neural network method for solving parabolic two-temperature microscale heat conduction in double-layered thin films exposed to ultrashort-pulsed lasers

A Bora, W Dai, JP Wilson, JC Boyt - International Journal of Heat and Mass …, 2021 - Elsevier
Simulation of the micro/nanoscale heat conduction induced by ultrashort-pulsed laser
heating has been attracting great attention. Additionally, machine and deep learning …

Neural network method for solving nonlocal two-temperature nanoscale heat conduction in gold films exposed to ultrashort-pulsed lasers

A Bora, W Dai, JP Wilson, JC Boyt… - International Journal of …, 2022 - Elsevier
Recently, we have presented an artificial neural network (ANN) method for solving the
parabolic two-temperature heat conduction equations (PTTM) in double-layered thin films …

Physics-informed mta-unet: prediction of thermal stress and thermal deformation of satellites

Z Cao, W Yao, W Peng, X Zhang, K Bao - Aerospace, 2022 - mdpi.com
The rapid analysis of thermal stress and deformation plays a pivotal role in the thermal
control measures and optimization of the structural design of satellites. For achieving real …

A physics and data co-driven surrogate modeling approach for temperature field prediction on irregular geometric domain

K Bao, W Yao, X Zhang, W Peng, Y Li - Structural and Multidisciplinary …, 2022 - Springer
In the whole aircraft structural optimization loop, thermal analysis plays a very important role.
But it faces a severe computational burden when directly applying traditional numerical …

GPU-basierte Verfahren zur Segmentierung biomedizinischer Bilddaten

PD Lösel - 2022 - archiv.ub.uni-heidelberg.de
Die Analyse medizinischer und biologischer Bilddaten erfordert häufig die Isolierung
einzelner Strukturen aus einem 3D-Volumen durch Segmentierung. Trotz einer Vielzahl …

[图书][B] Deep Learning-based Forward Modeling and Inversion Techniques for Computational Physics Problems

Y Wang, Q Ren - 2023 - books.google.com
This book investigates in detail the emerging deep learning (DL) technique in computational
physics, assessing its promising potential to substitute conventional numerical solvers for …

Deep-Learning Temperature Field Prediction Method for Vehicle Domain Control Unit with Multiple Variables and Changeable Geometry

L Liang, L Lu, L Huang, Y Xie, S Yang, Y Huang… - Available at SSRN … - papers.ssrn.com
In this work, a novel deep learning-based approach for efficient thermal analysis in vehicle
Domain Control Units (DCUs) is developed. Conventional numerical simulation methods …

DiffusionNet: Accelerating the solution of Time-Dependent partial differential equations using deep learning

M Asem - arXiv preprint arXiv:2011.10015, 2020 - arxiv.org
We present our deep learning framework to solve and accelerate the Time-Dependent
partial differential equation's solution of one and two spatial dimensions. We demonstrate …