A review on machine learning styles in computer vision—techniques and future directions

SV Mahadevkar, B Khemani, S Patil, K Kotecha… - Ieee …, 2022 - ieeexplore.ieee.org
Computer applications have considerably shifted from single data processing to machine
learning in recent years due to the accessibility and availability of massive volumes of data …

[HTML][HTML] Surgical data science–from concepts toward clinical translation

L Maier-Hein, M Eisenmann, D Sarikaya, K März… - Medical image …, 2022 - Elsevier
Recent developments in data science in general and machine learning in particular have
transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a …

Blind image quality assessment via vision-language correspondence: A multitask learning perspective

W Zhang, G Zhai, Y Wei, X Yang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
We aim at advancing blind image quality assessment (BIQA), which predicts the human
perception of image quality without any reference information. We develop a general and …

Multimodal foundation models: From specialists to general-purpose assistants

C Li, Z Gan, Z Yang, J Yang, L Li… - … and Trends® in …, 2024 - nowpublishers.com
Neural compression is the application of neural networks and other machine learning
methods to data compression. Recent advances in statistical machine learning have opened …

Perceiver io: A general architecture for structured inputs & outputs

A Jaegle, S Borgeaud, JB Alayrac, C Doersch… - arXiv preprint arXiv …, 2021 - arxiv.org
A central goal of machine learning is the development of systems that can solve many
problems in as many data domains as possible. Current architectures, however, cannot be …

Omnivore: A single model for many visual modalities

R Girdhar, M Singh, N Ravi… - Proceedings of the …, 2022 - openaccess.thecvf.com
Prior work has studied different visual modalities in isolation and developed separate
architectures for recognition of images, videos, and 3D data. Instead, in this paper, we …

Conflict-averse gradient descent for multi-task learning

B Liu, X Liu, X Jin, P Stone… - Advances in Neural …, 2021 - proceedings.neurips.cc
The goal of multi-task learning is to enable more efficient learning than single task learning
by sharing model structures for a diverse set of tasks. A standard multi-task learning …

Beverse: Unified perception and prediction in birds-eye-view for vision-centric autonomous driving

Y Zhang, Z Zhu, W Zheng, J Huang, G Huang… - arXiv preprint arXiv …, 2022 - arxiv.org
In this paper, we present BEVerse, a unified framework for 3D perception and prediction
based on multi-camera systems. Unlike existing studies focusing on the improvement of …

Efficiently identifying task groupings for multi-task learning

C Fifty, E Amid, Z Zhao, T Yu… - Advances in Neural …, 2021 - proceedings.neurips.cc
Multi-task learning can leverage information learned by one task to benefit the training of
other tasks. Despite this capacity, naively training all tasks together in one model often …

Multi-task learning with deep neural networks: A survey

M Crawshaw - arXiv preprint arXiv:2009.09796, 2020 - arxiv.org
Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are
simultaneously learned by a shared model. Such approaches offer advantages like …