A systematic literature review on federated machine learning: From a software engineering perspective

SK Lo, Q Lu, C Wang, HY Paik, L Zhu - ACM Computing Surveys (CSUR …, 2021 - dl.acm.org
Federated learning is an emerging machine learning paradigm where clients train models
locally and formulate a global model based on the local model updates. To identify the state …

A software engineering perspective on engineering machine learning systems: State of the art and challenges

G Giray - Journal of Systems and Software, 2021 - Elsevier
Context: Advancements in machine learning (ML) lead to a shift from the traditional view of
software development, where algorithms are hard-coded by humans, to ML systems …

The fallacy of AI functionality

ID Raji, IE Kumar, A Horowitz, A Selbst - … of the 2022 ACM Conference on …, 2022 - dl.acm.org
Deployed AI systems often do not work. They can be constructed haphazardly, deployed
indiscriminately, and promoted deceptively. However, despite this reality, scholars, the …

Software engineering for AI-based systems: a survey

S Martínez-Fernández, J Bogner, X Franch… - ACM Transactions on …, 2022 - dl.acm.org
AI-based systems are software systems with functionalities enabled by at least one AI
component (eg, for image-, speech-recognition, and autonomous driving). AI-based systems …

Collaboration challenges in building ml-enabled systems: Communication, documentation, engineering, and process

N Nahar, S Zhou, G Lewis, C Kästner - Proceedings of the 44th …, 2022 - dl.acm.org
The introduction of machine learning (ML) components in software projects has created the
need for software engineers to collaborate with data scientists and other specialists. While …

How ai developers overcome communication challenges in a multidisciplinary team: A case study

D Piorkowski, S Park, AY Wang, D Wang… - Proceedings of the …, 2021 - dl.acm.org
The development of AI applications is a multidisciplinary effort, involving multiple roles
collaborating with the AI developers, an umbrella term we use to include data scientists and …

Large-scale machine learning systems in real-world industrial settings: A review of challenges and solutions

LE Lwakatare, A Raj, I Crnkovic, J Bosch… - Information and software …, 2020 - Elsevier
Background: Developing and maintaining large scale machine learning (ML) based
software systems in an industrial setting is challenging. There are no well-established …

Adoption and effects of software engineering best practices in machine learning

A Serban, K Van der Blom, H Hoos… - Proceedings of the 14th …, 2020 - dl.acm.org
Background. The increasing reliance on applications with machine learning (ML)
components calls for mature engineering techniques that ensure these are built in a robust …

A survey on machine learning techniques for source code analysis

T Sharma, M Kechagia, S Georgiou, R Tiwari… - arXiv preprint arXiv …, 2021 - arxiv.org
The advancements in machine learning techniques have encouraged researchers to apply
these techniques to a myriad of software engineering tasks that use source code analysis …

A comparative study of class rebalancing methods for security bug report classification

W Zheng, Y Xun, X Wu, Z Deng… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Identifying security bug reports (SBRs) accurately from a bug repository can reduce a
software product's security risk. However, the class imbalance problem exists for SBR …