[HTML][HTML] A comprehensive survey of image augmentation techniques for deep learning

M Xu, S Yoon, A Fuentes, DS Park - Pattern Recognition, 2023 - Elsevier
Although deep learning has achieved satisfactory performance in computer vision, a large
volume of images is required. However, collecting images is often expensive and …

[HTML][HTML] Data augmentation: A comprehensive survey of modern approaches

A Mumuni, F Mumuni - Array, 2022 - Elsevier
To ensure good performance, modern machine learning models typically require large
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …

[HTML][HTML] Deep learning in food category recognition

Y Zhang, L Deng, H Zhu, W Wang, Z Ren, Q Zhou… - Information …, 2023 - Elsevier
Integrating artificial intelligence with food category recognition has been a field of interest for
research for the past few decades. It is potentially one of the next steps in revolutionizing …

Image data augmentation for deep learning: A survey

S Yang, W Xiao, M Zhang, S Guo, J Zhao… - arXiv preprint arXiv …, 2022 - arxiv.org
Deep learning has achieved remarkable results in many computer vision tasks. Deep neural
networks typically rely on large amounts of training data to avoid overfitting. However …

[HTML][HTML] Review of image classification algorithms based on convolutional neural networks

L Chen, S Li, Q Bai, J Yang, S Jiang, Y Miao - Remote Sensing, 2021 - mdpi.com
Image classification has always been a hot research direction in the world, and the
emergence of deep learning has promoted the development of this field. Convolutional …

Review on convolutional neural network (CNN) applied to plant leaf disease classification

J Lu, L Tan, H Jiang - Agriculture, 2021 - mdpi.com
Crop production can be greatly reduced due to various diseases, which seriously endangers
food security. Thus, detecting plant diseases accurately is necessary and urgent. Traditional …

Avoiding overfitting: A survey on regularization methods for convolutional neural networks

CFGD Santos, JP Papa - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
Several image processing tasks, such as image classification and object detection, have
been significantly improved using Convolutional Neural Networks (CNN). Like ResNet and …

Time series data augmentation for deep learning: A survey

Q Wen, L Sun, F Yang, X Song, J Gao, X Wang… - arXiv preprint arXiv …, 2020 - arxiv.org
Deep learning performs remarkably well on many time series analysis tasks recently. The
superior performance of deep neural networks relies heavily on a large number of training …

Randaugment: Practical automated data augmentation with a reduced search space

ED Cubuk, B Zoph, J Shlens… - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
Recent work on automated augmentation strategies has led to state-of-the-art results in
image classification and object detection. An obstacle to a large-scale adoption of these …

Trivialaugment: Tuning-free yet state-of-the-art data augmentation

SG Müller, F Hutter - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Automatic augmentation methods have recently become a crucial pillar for strong model
performance in vision tasks. While existing automatic augmentation methods need to trade …