Micro-hyperbolic systems
M Kashiwara, P Schapira - 1979 - projecteuclid.org
The so-called" Cauchy Problem" has a very long and classical story, from J. Hadamard [7],
IG Petrovski [22], J. Leray [20], L. G~ rding [6].... to, for example, the last results of Ivrii and …
IG Petrovski [22], J. Leray [20], L. G~ rding [6].... to, for example, the last results of Ivrii and …
Propagation des singularités analytiques pour les solutions des équations aux dérivées partielles
JM Bony, P Schapira - Annales de l'institut Fourier, 1976 - numdam.org
Cet article (1) est consacré à l'étude des opérateurs (pseudo)-différentiels analytiques P
dont la variété caractéristique est régulière, involutive, de codimension M> L Nous …
dont la variété caractéristique est régulière, involutive, de codimension M> L Nous …
Micro-hyperbolic pseudo-differential operators I
M Kashiwara, T Kawai - Journal of the Mathematical Society of Japan, 1975 - jstage.jst.go.jp
§ 0. Introduction. Bony and Schapira [1] has proved that the Cauchy problem is well-posed
for hyperbolic operators with variable coefficients in the framework of hyperfunctions. In their …
for hyperbolic operators with variable coefficients in the framework of hyperfunctions. In their …
Opérateurs hyperboliques à caractéristiques de multiplicité constante
J Chazarain - Annales de l'institut Fourier, 1974 - numdam.org
On considère un opérateur différentiel P (x, D) à partie principale hyperbolique et à
caractéristiques de multiplicité constante. Il est connu que, pour de tels opérateurs, le …
caractéristiques de multiplicité constante. Il est connu que, pour de tels opérateurs, le …
Fuchsian type equations and Fuchsian hyperbolic equations
H TAHARA - Japanese journal of mathematics. New series, 1979 - jstage.jst.go.jp
where {t3juj(t)} is a fundamental system of solutions and cj are arbitrary constants. (1-2) Any
hyperfunction solution of the eq Page 1 Japan. J. Math. Vol. 5, No. 2, 1979 Fuchsian type …
hyperfunction solution of the eq Page 1 Japan. J. Math. Vol. 5, No. 2, 1979 Fuchsian type …
Microhyperbolic operators in Gevrey classes
K Kajitani, S Wakabayashi - Publications of the Research Institute for …, 1989 - jstage.jst.go.jp
Kashiwara and Kawai [16] defined microhyperbolicity and proved that the microlocal Cauchy
problem for microhyperbolic pseudodifferential operators is well-posed in the framework of …
problem for microhyperbolic pseudodifferential operators is well-posed in the framework of …
Singularities of solutions of the Cauchy problem for hyperbolic systems in Gevrey classes
S WAKABAYASHI - Japanese journal of mathematics. New series, 1985 - jstage.jst.go.jp
§ 1. Introduction Singularities of solutions of the hyperbolic Cauchy problem have been
investigated by many authors. In these works, Hamilton flows (null bicharacteristic flows) …
investigated by many authors. In these works, Hamilton flows (null bicharacteristic flows) …
Global real analytic solutions of the cauchy problem for linear partial differntial equations
K Kajitani - Communications in partial differential equations, 1986 - Taylor & Francis
The Cauchy-Kowalevski theorem assures that the noncharacteristic Cauchy problem for
partial differential equations with analytic coefficients has a unique local solution (cf Nagumo …
partial differential equations with analytic coefficients has a unique local solution (cf Nagumo …
Hyperbolic systems and propagation on causal manifolds
P Schapira - Letters in Mathematical Physics, 2013 - Springer
In this paper, which is essentially a survey, we solve the global Cauchy problem on causal
manifolds for hyperbolic systems of linear partial differential equations in the framework of …
manifolds for hyperbolic systems of linear partial differential equations in the framework of …
Construction and investigation of solutions of differential equations by methods in the theory of approximation of functions
AV Babin - Mathematics of the USSR-Sbornik, 1985 - iopscience.iop.org
The steady-state equation, the parabolic Cauchy problem,, and the hyperbolic problem,,, are
considered, where is a matrix-valued positive selfadjoint second-order partial differential …
considered, where is a matrix-valued positive selfadjoint second-order partial differential …