Review on deep learning applications in frequency analysis and control of modern power system

Y Zhang, X Shi, H Zhang, Y Cao, V Terzija - International Journal of …, 2022 - Elsevier
The penetration of renewable energy resources (RES) generation and the interconnection of
regional power grids in wide area and large scale have led the modern power system to …

Pre-trained models for natural language processing: A survey

X Qiu, T Sun, Y Xu, Y Shao, N Dai, X Huang - Science China …, 2020 - Springer
Recently, the emergence of pre-trained models (PTMs) has brought natural language
processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs …

Graph neural networks for natural language processing: A survey

L Wu, Y Chen, K Shen, X Guo, H Gao… - … and Trends® in …, 2023 - nowpublishers.com
Deep learning has become the dominant approach in addressing various tasks in Natural
Language Processing (NLP). Although text inputs are typically represented as a sequence …

Graph convolutional networks: a comprehensive review

S Zhang, H Tong, J Xu, R Maciejewski - Computational Social Networks, 2019 - Springer
Graphs naturally appear in numerous application domains, ranging from social analysis,
bioinformatics to computer vision. The unique capability of graphs enables capturing the …

A comprehensive survey on graph neural networks

Z Wu, S Pan, F Chen, G Long, C Zhang… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Deep learning has revolutionized many machine learning tasks in recent years, ranging
from image classification and video processing to speech recognition and natural language …

[HTML][HTML] Graph neural networks: A review of methods and applications

J Zhou, G Cui, S Hu, Z Zhang, C Yang, Z Liu, L Wang… - AI open, 2020 - Elsevier
Lots of learning tasks require dealing with graph data which contains rich relation
information among elements. Modeling physics systems, learning molecular fingerprints …

[图书][B] Deep learning on graphs

Y Ma, J Tang - 2021 - books.google.com
Deep learning on graphs has become one of the hottest topics in machine learning. The
book consists of four parts to best accommodate our readers with diverse backgrounds and …

A gentle introduction to deep learning for graphs

D Bacciu, F Errica, A Micheli, M Podda - Neural Networks, 2020 - Elsevier
The adaptive processing of graph data is a long-standing research topic that has been lately
consolidated as a theme of major interest in the deep learning community. The snap …

Sk-gcn: Modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification

J Zhou, JX Huang, QV Hu, L He - Knowledge-Based Systems, 2020 - Elsevier
Aspect-level sentiment classification is a fundamental subtask of fine-grained sentiment
analysis. The syntactic information and commonsense knowledge are important and useful …

Fake news detection: A survey of graph neural network methods

HT Phan, NT Nguyen, D Hwang - Applied Soft Computing, 2023 - Elsevier
The emergence of various social networks has generated vast volumes of data. Efficient
methods for capturing, distinguishing, and filtering real and fake news are becoming …