Learning from noisy labels with deep neural networks: A survey

H Song, M Kim, D Park, Y Shin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep learning has achieved remarkable success in numerous domains with help from large
amounts of big data. However, the quality of data labels is a concern because of the lack of …

Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond

X Li, H Xiong, X Li, X Wu, X Zhang, J Liu, J Bian… - … and Information Systems, 2022 - Springer
Deep neural networks have been well-known for their superb handling of various machine
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …

Deep learning on a data diet: Finding important examples early in training

M Paul, S Ganguli… - Advances in neural …, 2021 - proceedings.neurips.cc
Recent success in deep learning has partially been driven by training increasingly
overparametrized networks on ever larger datasets. It is therefore natural to ask: how much …

Understanding Dataset Difficulty with -Usable Information

K Ethayarajh, Y Choi… - … Conference on Machine …, 2022 - proceedings.mlr.press
Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to
humans; the bigger the performance gap, the harder the dataset is said to be. However, this …

Dataset cartography: Mapping and diagnosing datasets with training dynamics

S Swayamdipta, R Schwartz, N Lourie, Y Wang… - arXiv preprint arXiv …, 2020 - arxiv.org
Large datasets have become commonplace in NLP research. However, the increased
emphasis on data quantity has made it challenging to assess the quality of data. We …

[PDF][PDF] Robust early-learning: Hindering the memorization of noisy labels

X Xia, T Liu, B Han, C Gong, N Wang… - International …, 2020 - drive.google.com
The memorization effects of deep networks show that they will first memorize training data
with clean labels and then those with noisy labels. The early stopping method therefore can …

Combating noisy labels with sample selection by mining high-discrepancy examples

X Xia, B Han, Y Zhan, J Yu, M Gong… - Proceedings of the …, 2023 - openaccess.thecvf.com
The sample selection approach is popular in learning with noisy labels. The state-of-the-art
methods train two deep networks simultaneously for sample selection, which aims to employ …

Prioritized training on points that are learnable, worth learning, and not yet learnt

S Mindermann, JM Brauner… - International …, 2022 - proceedings.mlr.press
Training on web-scale data can take months. But much computation and time is wasted on
redundant and noisy points that are already learnt or not learnable. To accelerate training …

Deep learning with label differential privacy

B Ghazi, N Golowich, R Kumar… - Advances in neural …, 2021 - proceedings.neurips.cc
Abstract The Randomized Response (RR) algorithm is a classical technique to improve
robustness in survey aggregation, and has been widely adopted in applications with …

Sample selection with uncertainty of losses for learning with noisy labels

X Xia, T Liu, B Han, M Gong, J Yu, G Niu… - arXiv preprint arXiv …, 2021 - arxiv.org
In learning with noisy labels, the sample selection approach is very popular, which regards
small-loss data as correctly labeled during training. However, losses are generated on-the …