Explainable AI (XAI): Core ideas, techniques, and solutions
As our dependence on intelligent machines continues to grow, so does the demand for more
transparent and interpretable models. In addition, the ability to explain the model generally …
transparent and interpretable models. In addition, the ability to explain the model generally …
Survey of explainable AI techniques in healthcare
Artificial intelligence (AI) with deep learning models has been widely applied in numerous
domains, including medical imaging and healthcare tasks. In the medical field, any judgment …
domains, including medical imaging and healthcare tasks. In the medical field, any judgment …
Explainable artificial intelligence: a comprehensive review
Thanks to the exponential growth in computing power and vast amounts of data, artificial
intelligence (AI) has witnessed remarkable developments in recent years, enabling it to be …
intelligence (AI) has witnessed remarkable developments in recent years, enabling it to be …
Explainable artificial intelligence: an analytical review
This paper provides a brief analytical review of the current state‐of‐the‐art in relation to the
explainability of artificial intelligence in the context of recent advances in machine learning …
explainability of artificial intelligence in the context of recent advances in machine learning …
Interpretable machine learning: Fundamental principles and 10 grand challenges
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
A systematic review of explainable artificial intelligence in terms of different application domains and tasks
Artificial intelligence (AI) and machine learning (ML) have recently been radically improved
and are now being employed in almost every application domain to develop automated or …
and are now being employed in almost every application domain to develop automated or …
A survey on the explainability of supervised machine learning
N Burkart, MF Huber - Journal of Artificial Intelligence Research, 2021 - jair.org
Predictions obtained by, eg, artificial neural networks have a high accuracy but humans
often perceive the models as black boxes. Insights about the decision making are mostly …
often perceive the models as black boxes. Insights about the decision making are mostly …
[HTML][HTML] Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research
The rapid growth and use of artificial intelligence (AI)-based systems have raised concerns
regarding explainability. Recent studies have discussed the emerging demand for …
regarding explainability. Recent studies have discussed the emerging demand for …
Trustworthy AI: From principles to practices
The rapid development of Artificial Intelligence (AI) technology has enabled the deployment
of various systems based on it. However, many current AI systems are found vulnerable to …
of various systems based on it. However, many current AI systems are found vulnerable to …
A survey of visual analytics for explainable artificial intelligence methods
G Alicioglu, B Sun - Computers & Graphics, 2022 - Elsevier
Deep learning (DL) models have achieved impressive performance in various domains such
as medicine, finance, and autonomous vehicle systems with advances in computing power …
as medicine, finance, and autonomous vehicle systems with advances in computing power …