[HTML][HTML] Review of image classification algorithms based on convolutional neural networks

L Chen, S Li, Q Bai, J Yang, S Jiang, Y Miao - Remote Sensing, 2021 - mdpi.com
Image classification has always been a hot research direction in the world, and the
emergence of deep learning has promoted the development of this field. Convolutional …

Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives

J Li, J Chen, Y Tang, C Wang, BA Landman… - Medical image …, 2023 - Elsevier
Transformer, one of the latest technological advances of deep learning, has gained
prevalence in natural language processing or computer vision. Since medical imaging bear …

Activating more pixels in image super-resolution transformer

X Chen, X Wang, J Zhou, Y Qiao… - Proceedings of the …, 2023 - openaccess.thecvf.com
Transformer-based methods have shown impressive performance in low-level vision tasks,
such as image super-resolution. However, we find that these networks can only utilize a …

Efficientformer: Vision transformers at mobilenet speed

Y Li, G Yuan, Y Wen, J Hu… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Vision Transformers (ViT) have shown rapid progress in computer vision tasks,
achieving promising results on various benchmarks. However, due to the massive number of …

SNR-aware low-light image enhancement

X Xu, R Wang, CW Fu, J Jia - Proceedings of the IEEE/CVF …, 2022 - openaccess.thecvf.com
This paper presents a new solution for low-light image enhancement by collectively
exploiting Signal-to-Noise-Ratio-aware transformers and convolutional models to …

Learning a sparse transformer network for effective image deraining

X Chen, H Li, M Li, J Pan - … of the IEEE/CVF Conference on …, 2023 - openaccess.thecvf.com
Transformers-based methods have achieved significant performance in image deraining as
they can model the non-local information which is vital for high-quality image reconstruction …

Vision transformer with deformable attention

Z Xia, X Pan, S Song, LE Li… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Transformers have recently shown superior performances on various vision tasks. The large,
sometimes even global, receptive field endows Transformer models with higher …

Pure transformers are powerful graph learners

J Kim, D Nguyen, S Min, S Cho… - Advances in Neural …, 2022 - proceedings.neurips.cc
We show that standard Transformers without graph-specific modifications can lead to
promising results in graph learning both in theory and practice. Given a graph, we simply …

Topformer: Token pyramid transformer for mobile semantic segmentation

W Zhang, Z Huang, G Luo, T Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Although vision transformers (ViTs) have achieved great success in computer vision, the
heavy computational cost hampers their applications to dense prediction tasks such as …

Uniformer: Unifying convolution and self-attention for visual recognition

K Li, Y Wang, J Zhang, P Gao, G Song… - … on Pattern Analysis …, 2023 - ieeexplore.ieee.org
It is a challenging task to learn discriminative representation from images and videos, due to
large local redundancy and complex global dependency in these visual data. Convolution …