An introduction to multiparameter persistence

MB Botnan, M Lesnick - arXiv preprint arXiv:2203.14289, 2022 - arxiv.org
In topological data analysis (TDA), one often studies the shape of data by constructing a
filtered topological space, whose structure is then examined using persistent homology …

Stable vectorization of multiparameter persistent homology using signed barcodes as measures

D Loiseaux, L Scoccola, M Carrière… - Advances in …, 2024 - proceedings.neurips.cc
Persistent homology (PH) provides topological descriptors for geometric data, such as
weighted graphs, which are interpretable, stable to perturbations, and invariant under, eg …

Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions

MB Botnan, S Oppermann, S Oudot - Foundations of Computational …, 2024 - Springer
In this paper, we introduce the signed barcode, a new visual representation of the global
structure of the rank invariant of a multi-parameter persistence module or, more generally, of …

Delaunay bifiltrations of functions on point clouds

ÁJ Alonso, M Kerber, T Lam, M Lesnick - … of the 2024 Annual ACM-SIAM …, 2024 - SIAM
Abstract The Delaunay filtration D.(X) of a point cloud X⊂ ℝd is a central tool of
computational topology. Its use is justified by the topological equivalence of D.(X) and the …

Koszul complexes and relative homological algebra of functors over posets

W Chachólski, A Guidolin, I Ren, M Scolamiero… - Foundations of …, 2024 - Springer
Under certain conditions, Koszul complexes can be used to calculate relative Betti diagrams
of vector space-valued functors indexed by a poset, without the explicit computation of …

Differentiability and Optimization of Multiparameter Persistent Homology

L Scoccola, S Setlur, D Loiseaux, M Carrière… - arXiv preprint arXiv …, 2024 - arxiv.org
Real-valued functions on geometric data--such as node attributes on a graph--can be
optimized using descriptors from persistent homology, allowing the user to incorporate …

Decomposition of zero-dimensional persistence modules via rooted subsets

ÁJ Alonso, M Kerber - Discrete & Computational Geometry, 2024 - Springer
We study the decomposition of zero-dimensional persistence modules, viewed as functors
valued in the category of vector spaces factorizing through sets. Instead of working directly at …

Stabilizing decomposition of multiparameter persistence modules

HB Bjerkevik - arXiv preprint arXiv:2305.15550, 2023 - arxiv.org
While decomposition of one-parameter persistence modules behaves nicely, as
demonstrated by the algebraic stability theorem, decomposition of multiparameter modules …

Sparse Approximation of the Subdivision-Rips Bifiltration for Doubling Metrics

M Lesnick, K McCabe - arXiv preprint arXiv:2408.16716, 2024 - arxiv.org
The Vietoris-Rips filtration, the standard filtration on metric data in topological data analysis,
is notoriously sensitive to outliers. Sheehy's subdivision-Rips bifiltration $\mathcal {SR}(-) …

Persistence and the sheaf-function correspondence

N Berkouk - Forum of Mathematics, Sigma, 2023 - cambridge.org
The sheaf-function correspondence identifies the group of constructible functions on a real
analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a …