The transformational role of GPU computing and deep learning in drug discovery

M Pandey, M Fernandez, F Gentile, O Isayev… - Nature Machine …, 2022 - nature.com
Deep learning has disrupted nearly every field of research, including those of direct
importance to drug discovery, such as medicinal chemistry and pharmacology. This …

Four generations of high-dimensional neural network potentials

J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …

Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR

A Tropsha, O Isayev, A Varnek, G Schneider… - Nature Reviews Drug …, 2024 - nature.com
Quantitative structure–activity relationship (QSAR) modelling, an approach that was
introduced 60 years ago, is widely used in computer-aided drug design. In recent years …

Machine learning interatomic potentials and long-range physics

DM Anstine, O Isayev - The Journal of Physical Chemistry A, 2023 - ACS Publications
Advances in machine learned interatomic potentials (MLIPs), such as those using neural
networks, have resulted in short-range models that can infer interaction energies with near …

SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects

OT Unke, S Chmiela, M Gastegger, KT Schütt… - Nature …, 2021 - nature.com
Abstract Machine-learned force fields combine the accuracy of ab initio methods with the
efficiency of conventional force fields. However, current machine-learned force fields …

Inverse design of 3d molecular structures with conditional generative neural networks

NWA Gebauer, M Gastegger, SSP Hessmann… - Nature …, 2022 - nature.com
The rational design of molecules with desired properties is a long-standing challenge in
chemistry. Generative neural networks have emerged as a powerful approach to sample …

A critical overview of computational approaches employed for COVID-19 drug discovery

EN Muratov, R Amaro, CH Andrade, N Brown… - Chemical Society …, 2021 - pubs.rsc.org
COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought
the most severe disruptions to societies and economies since the Great Depression …

Retrospective on a decade of machine learning for chemical discovery

OA von Lilienfeld, K Burke - Nature communications, 2020 - nature.com
Standfirst Over the last decade, we have witnessed the emergence of ever more machine
learning applications in all aspects of the chemical sciences. Here, we highlight specific …

Neural network potentials: A concise overview of methods

E Kocer, TW Ko, J Behler - Annual review of physical chemistry, 2022 - annualreviews.org
In the past two decades, machine learning potentials (MLPs) have reached a level of
maturity that now enables applications to large-scale atomistic simulations of a wide range …

Emerging materials intelligence ecosystems propelled by machine learning

R Batra, L Song, R Ramprasad - Nature Reviews Materials, 2021 - nature.com
The age of cognitive computing and artificial intelligence (AI) is just dawning. Inspired by its
successes and promises, several AI ecosystems are blossoming, many of them within the …