Lipschitz graphs and currents in Heisenberg groups

D Vittone - Forum of Mathematics, Sigma, 2022 - cambridge.org
The main result of the present article is a Rademacher-type theorem for intrinsic Lipschitz
graphs of codimension in sub-Riemannian Heisenberg groups. For the purpose of proving …

Uniformly rectifiable metric spaces: Lipschitz images, bi-lateral weak geometric lemma and corona decompositions

D Bate, M Hyde, R Schul - arXiv preprint arXiv:2306.12933, 2023 - arxiv.org
In their 1991 and 1993 foundational monographs, David and Semmes characterized uniform
rectifiability for subsets of Euclidean space in a multitude of geometric and analytic ways …

Foliated corona decompositions

A Naor, R Young - Acta Mathematica, 2022 - projecteuclid.org
We prove that the L_4 norm of the vertical perimeter of any measurable subset of the 3-
dimensional Heisenberg group H is at most a universal constant multiple of the …

[图书][B] Rectifiability: a survey

P Mattila - 2023 - books.google.com
Rectifiable sets, measures, currents and varifolds are foundational concepts in geometric
measure theory. The last four decades have seen the emergence of a wealth of connections …

Rectifiability; a survey

P Mattila - arXiv preprint arXiv:2112.00540, 2021 - arxiv.org
arXiv:2112.00540v3 [math.CA] 1 Mar 2022 Page 1 arXiv:2112.00540v3 [math.CA] 1 Mar
2022 RECTIFIABILITY; A SURVEY PERTTI MATTILA Abstract. This is a survey on …

On various Carleson-type geometric lemmas and uniform rectifiability in metric spaces

K Fässler, IY Violo - arXiv preprint arXiv:2310.10519, 2023 - arxiv.org
We introduce new flatness coefficients, which we call\emph {$\iota $-numbers}, for Ahlfors
regular sets in metric spaces. We investigate the relation between Carleson-type geometric …

The strong geometric lemma in the Heisenberg group

V Chousionis, S Li, R Young - arXiv preprint arXiv:2304.13711, 2023 - arxiv.org
We prove that in the first Heisenberg group, unlike Euclidean spaces and higher
dimensional Heisenberg groups, the best possible exponent for the strong geometric lemma …

Vertical projections in the Heisenberg group for sets of dimension greater than 3

TLJ Harris - arXiv preprint arXiv:2301.04645, 2023 - arxiv.org
It is shown that vertical projections in the Heisenberg group of sets of dimension strictly
greater than 3 almost surely have positive area. The proof uses the point-plate incidence …

Plenty of big projections imply big pieces of Lipschitz graphs

T Orponen - Inventiones mathematicae, 2021 - Springer
Plenty of big projections imply big pieces of Lipschitz graphs | Inventiones mathematicae Skip to
main content SpringerLink Log in Menu Find a journal Publish with us Search Cart 1.Home …

The strong geometric lemma for intrinsic Lipschitz graphs in Heisenberg groups

V Chousionis, S Li, R Young - Journal für die reine und angewandte …, 2022 - degruyter.com
We show that the β-numbers of intrinsic Lipschitz graphs of Heisenberg groups ℍ n are
locally Carleson integrable when n≥ 2. Our main bound uses a novel slicing argument to …