A survey of the usages of deep learning for natural language processing
Over the last several years, the field of natural language processing has been propelled
forward by an explosion in the use of deep learning models. This article provides a brief …
forward by an explosion in the use of deep learning models. This article provides a brief …
Evolution of semantic similarity—a survey
D Chandrasekaran, V Mago - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
Estimating the semantic similarity between text data is one of the challenging and open
research problems in the field of Natural Language Processing (NLP). The versatility of …
research problems in the field of Natural Language Processing (NLP). The versatility of …
C-pack: Packed resources for general chinese embeddings
We introduce C-Pack, a package of resources that significantly advances the field of general
text embeddings for Chinese. C-Pack includes three critical resources. 1) C-MTP is a …
text embeddings for Chinese. C-Pack includes three critical resources. 1) C-MTP is a …
MTEB: Massive text embedding benchmark
Text embeddings are commonly evaluated on a small set of datasets from a single task not
covering their possible applications to other tasks. It is unclear whether state-of-the-art …
covering their possible applications to other tasks. It is unclear whether state-of-the-art …
Simcse: Simple contrastive learning of sentence embeddings
This paper presents SimCSE, a simple contrastive learning framework that greatly advances
state-of-the-art sentence embeddings. We first describe an unsupervised approach, which …
state-of-the-art sentence embeddings. We first describe an unsupervised approach, which …
Consert: A contrastive framework for self-supervised sentence representation transfer
Learning high-quality sentence representations benefits a wide range of natural language
processing tasks. Though BERT-based pre-trained language models achieve high …
processing tasks. Though BERT-based pre-trained language models achieve high …
Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models
We provide the first exploration of sentence embeddings from text-to-text transformers (T5).
Sentence embeddings are broadly useful for language processing tasks. While T5 achieves …
Sentence embeddings are broadly useful for language processing tasks. While T5 achieves …
On the sentence embeddings from pre-trained language models
Pre-trained contextual representations like BERT have achieved great success in natural
language processing. However, the sentence embeddings from the pre-trained language …
language processing. However, the sentence embeddings from the pre-trained language …
Whitening sentence representations for better semantics and faster retrieval
Pre-training models such as BERT have achieved great success in many natural language
processing tasks. However, how to obtain better sentence representation through these pre …
processing tasks. However, how to obtain better sentence representation through these pre …
[PDF][PDF] Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
N Reimers - arXiv preprint arXiv:1908.10084, 2019 - fq.pkwyx.com
BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new state-of-the-art
performance on sentence-pair regression tasks like semantic textual similarity (STS) …
performance on sentence-pair regression tasks like semantic textual similarity (STS) …