Deep reinforcement learning in smart manufacturing: A review and prospects
To facilitate the personalized smart manufacturing paradigm with cognitive automation
capabilities, Deep Reinforcement Learning (DRL) has attracted ever-increasing attention by …
capabilities, Deep Reinforcement Learning (DRL) has attracted ever-increasing attention by …
A review of deep reinforcement learning approaches for smart manufacturing in industry 4.0 and 5.0 framework
A del Real Torres, DS Andreiana, Á Ojeda Roldán… - Applied Sciences, 2022 - mdpi.com
In this review, the industry's current issues regarding intelligent manufacture are presented.
This work presents the status and the potential for the I4. 0 and I5. 0's revolutionary …
This work presents the status and the potential for the I4. 0 and I5. 0's revolutionary …
Open problems and fundamental limitations of reinforcement learning from human feedback
Reinforcement learning from human feedback (RLHF) is a technique for training AI systems
to align with human goals. RLHF has emerged as the central method used to finetune state …
to align with human goals. RLHF has emerged as the central method used to finetune state …
Behavior-1k: A benchmark for embodied ai with 1,000 everyday activities and realistic simulation
We present BEHAVIOR-1K, a comprehensive simulation benchmark for human-centered
robotics. BEHAVIOR-1K includes two components, guided and motivated by the results of an …
robotics. BEHAVIOR-1K includes two components, guided and motivated by the results of an …
Rorl: Robust offline reinforcement learning via conservative smoothing
Offline reinforcement learning (RL) provides a promising direction to exploit massive amount
of offline data for complex decision-making tasks. Due to the distribution shift issue, current …
of offline data for complex decision-making tasks. Due to the distribution shift issue, current …
Large sequence models for sequential decision-making: a survey
Transformer architectures have facilitated the development of large-scale and general-
purpose sequence models for prediction tasks in natural language processing and computer …
purpose sequence models for prediction tasks in natural language processing and computer …
Data-driven hospitals staff and resources allocation using agent-based simulation and deep reinforcement learning
T Lazebnik - Engineering Applications of Artificial Intelligence, 2023 - Elsevier
Hospital staff and resources allocation (HSRA) is a critical challenge in healthcare systems,
as it involves balancing the demands of patients, the availability of resources, and the need …
as it involves balancing the demands of patients, the availability of resources, and the need …
To imitate or not to imitate: Boosting reinforcement learning-based construction robotic control for long-horizon tasks using virtual demonstrations
Construction robots controlled using reinforcement learning (RL) have recently emerged,
showing higher adaptability and self-learning intelligence over pre-programmed and …
showing higher adaptability and self-learning intelligence over pre-programmed and …
Deep reinforcement learning versus evolution strategies: A comparative survey
AY Majid, S Saaybi, V Francois-Lavet… - … on Neural Networks …, 2023 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) and evolution strategies (ESs) have surpassed human-
level control in many sequential decision-making problems, yet many open challenges still …
level control in many sequential decision-making problems, yet many open challenges still …
Evolutionary reinforcement learning: A survey
Reinforcement learning (RL) is a machine learning approach that trains agents to maximize
cumulative rewards through interactions with environments. The integration of RL with deep …
cumulative rewards through interactions with environments. The integration of RL with deep …