Deep reinforcement learning in smart manufacturing: A review and prospects

C Li, P Zheng, Y Yin, B Wang, L Wang - CIRP Journal of Manufacturing …, 2023 - Elsevier
To facilitate the personalized smart manufacturing paradigm with cognitive automation
capabilities, Deep Reinforcement Learning (DRL) has attracted ever-increasing attention by …

A review of deep reinforcement learning approaches for smart manufacturing in industry 4.0 and 5.0 framework

A del Real Torres, DS Andreiana, Á Ojeda Roldán… - Applied Sciences, 2022 - mdpi.com
In this review, the industry's current issues regarding intelligent manufacture are presented.
This work presents the status and the potential for the I4. 0 and I5. 0's revolutionary …

Open problems and fundamental limitations of reinforcement learning from human feedback

S Casper, X Davies, C Shi, TK Gilbert… - arXiv preprint arXiv …, 2023 - arxiv.org
Reinforcement learning from human feedback (RLHF) is a technique for training AI systems
to align with human goals. RLHF has emerged as the central method used to finetune state …

Behavior-1k: A benchmark for embodied ai with 1,000 everyday activities and realistic simulation

C Li, R Zhang, J Wong, C Gokmen… - … on Robot Learning, 2023 - proceedings.mlr.press
We present BEHAVIOR-1K, a comprehensive simulation benchmark for human-centered
robotics. BEHAVIOR-1K includes two components, guided and motivated by the results of an …

Rorl: Robust offline reinforcement learning via conservative smoothing

R Yang, C Bai, X Ma, Z Wang… - Advances in neural …, 2022 - proceedings.neurips.cc
Offline reinforcement learning (RL) provides a promising direction to exploit massive amount
of offline data for complex decision-making tasks. Due to the distribution shift issue, current …

Large sequence models for sequential decision-making: a survey

M Wen, R Lin, H Wang, Y Yang, Y Wen, L Mai… - Frontiers of Computer …, 2023 - Springer
Transformer architectures have facilitated the development of large-scale and general-
purpose sequence models for prediction tasks in natural language processing and computer …

Data-driven hospitals staff and resources allocation using agent-based simulation and deep reinforcement learning

T Lazebnik - Engineering Applications of Artificial Intelligence, 2023 - Elsevier
Hospital staff and resources allocation (HSRA) is a critical challenge in healthcare systems,
as it involves balancing the demands of patients, the availability of resources, and the need …

To imitate or not to imitate: Boosting reinforcement learning-based construction robotic control for long-horizon tasks using virtual demonstrations

L Huang, Z Zhu, Z Zou - Automation in Construction, 2023 - Elsevier
Construction robots controlled using reinforcement learning (RL) have recently emerged,
showing higher adaptability and self-learning intelligence over pre-programmed and …

Deep reinforcement learning versus evolution strategies: A comparative survey

AY Majid, S Saaybi, V Francois-Lavet… - … on Neural Networks …, 2023 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) and evolution strategies (ESs) have surpassed human-
level control in many sequential decision-making problems, yet many open challenges still …

Evolutionary reinforcement learning: A survey

H Bai, R Cheng, Y Jin - Intelligent Computing, 2023 - spj.science.org
Reinforcement learning (RL) is a machine learning approach that trains agents to maximize
cumulative rewards through interactions with environments. The integration of RL with deep …