A Systematic Literature Review on Artificial Intelligence and Explainable Artificial Intelligence for Visual Quality Assurance in Manufacturing

R Hoffmann, C Reich - Electronics, 2023 - mdpi.com
Quality assurance (QA) plays a crucial role in manufacturing to ensure that products meet
their specifications. However, manual QA processes are costly and time-consuming, thereby …

An improved spectral subtraction method for eliminating additive noise in condition monitoring system using fiber Bragg grating sensors

Q Liu, Y Yu, BS Han, W Zhou - Sensors, 2024 - mdpi.com
The additive noise in the condition monitoring system using fiber Bragg grating (FBG)
sensors, including white Gaussian noise and multifrequency interference, has a significantly …

Wind Turbine Condition Monitoring Using the SSA-Optimized Self-Attention BiLSTM Network and Changepoint Detection Algorithm

J Yan, Y Liu, L Li, X Ren - Sensors, 2023 - mdpi.com
Condition-monitoring and anomaly-detection methods used for the assessment of wind
turbines are key to reducing operation and maintenance (O&M) cost and improving their …

Fault Diagnosis for Motor Bearings via an Intelligent Strategy Combined with Signal Reconstruction and Deep Learning.

W Li, N Fan, X Peng, C Zhang, M Li… - Energies …, 2024 - search.ebscohost.com
To overcome the incomplete decomposition of vibration signals in traditional motor-bearing
fault diagnosis algorithms and improve the ability to characterize fault characteristics and …

[HTML][HTML] Improved Intelligent Condition Monitoring with Diagnostic Indicator Selection

U Jachymczyk, P Knap, K Lalik - Sensors, 2024 - mdpi.com
In this study, a predictive maintenance (PdM) system focused on feature selection for the
detection and classification of simulated defects in wind turbine blades has been developed …

Bayesian-Tuned Convolutional Neural Networks for Precise Bearing Fault Classification

P Knap, U Jachymczyk - 2024 25th International Carpathian …, 2024 - ieeexplore.ieee.org
This paper presents a solution for the detection of bearing outer and inner race faults using a
Convolutional Neural Network (CNN) that directly analyzes raw data. Our proposed …

基于改进CEEMDAN-CNN 的轴承故障诊断研究.

张伟业, 缪维跑, 闻麒, 李春 - Journal of Engineering for …, 2024 - search.ebscohost.com
为保证旋转机械安全稳定运行和实现轴承早期疲劳损伤阶段故障诊断, 提出了改进自适应白噪声
平均总体经验模态分解(CEEMDAN) 与卷积神经网络融合的故障诊断方法. 通过CEEMDAN …

Application of Artificial Neural Networks to Determine the Length of Mining Bolts Using a Self-Excited Acoustical System

I Dominik, K Lalik, J Przepióra - 2024 25th International …, 2024 - ieeexplore.ieee.org
The self-excited acoustical system is a system for indirect determination of stresses in
mechanical structures. It uses the phenomenon of self-excitation of the sent acoustic wave in …

Reinforcement Lerning-Based Overhead Crane Control for Handling in Sensor-Failure Scenarios

P Balazy, S Podlasek - 2024 25th International Carpathian …, 2024 - ieeexplore.ieee.org
Overhead cranes are a key component of many industrial processes, enabling the rapid and
safe transportation of loads. An important aspect of their operation is reliability, including …

[PDF][PDF] АВТОМАТИЗОВАНІ СИСТЕМИ ОПТИЧНОЇ ПЕРЕВІРКИ ДРУКОВАНИХ ПЛАТ. ОГЛЯД ТЕХНОЛОГІЙ

ВО Сельоткін, ВА Волощук - ВЧЕНІ ЗАПИСКИ, 2024 - tech.vernadskyjournals.in.ua
Друковані плати є основними компонентами сучасної електроніки, забезпечуючи
компактність, надійність і високу продуктивність електронних схем. Їх точне …