Enhancing computational fluid dynamics with machine learning
R Vinuesa, SL Brunton - Nature Computational Science, 2022 - nature.com
Abstract Machine learning is rapidly becoming a core technology for scientific computing,
with numerous opportunities to advance the field of computational fluid dynamics. Here we …
with numerous opportunities to advance the field of computational fluid dynamics. Here we …
Modern Koopman theory for dynamical systems
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …
algorithms emerging from modern computing and data science. First-principles derivations …
Digital twin: Values, challenges and enablers from a modeling perspective
Digital twin can be defined as a virtual representation of a physical asset enabled through
data and simulators for real-time prediction, optimization, monitoring, controlling, and …
data and simulators for real-time prediction, optimization, monitoring, controlling, and …
Guide to spectral proper orthogonal decomposition
OT Schmidt, T Colonius - Aiaa journal, 2020 - arc.aiaa.org
This paper discusses the spectral proper orthogonal decomposition and its use in identifying
modes, or structures, in flow data. A specific algorithm based on estimating the cross …
modes, or structures, in flow data. A specific algorithm based on estimating the cross …
[HTML][HTML] Machine learning for combustion
Combustion science is an interdisciplinary study that involves nonlinear physical and
chemical phenomena in time and length scales, including complex chemical reactions and …
chemical phenomena in time and length scales, including complex chemical reactions and …
Discovering causal relations and equations from data
Physics is a field of science that has traditionally used the scientific method to answer
questions about why natural phenomena occur and to make testable models that explain the …
questions about why natural phenomena occur and to make testable models that explain the …
Modal analysis of fluid flows: Applications and outlook
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
We consider the frequency domain form of proper orthogonal decomposition (POD), called
spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space …
spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space …
Data-driven modeling for unsteady aerodynamics and aeroelasticity
Aerodynamic modeling plays an important role in multiphysics and design problems, in
addition to experiment and numerical simulation, due to its low-dimensional representation …
addition to experiment and numerical simulation, due to its low-dimensional representation …
A concise guide to modelling the physics of embodied intelligence in soft robotics
Embodied intelligence (intelligence that requires and leverages a physical body) is a well-
known paradigm in soft robotics, but its mathematical description and consequent …
known paradigm in soft robotics, but its mathematical description and consequent …