Human-in-the-loop machine learning: a state of the art

E Mosqueira-Rey, E Hernández-Pereira… - Artificial Intelligence …, 2023 - Springer
Researchers are defining new types of interactions between humans and machine learning
algorithms generically called human-in-the-loop machine learning. Depending on who is in …

Recent advancements and challenges of Internet of Things in smart agriculture: A survey

BB Sinha, R Dhanalakshmi - Future Generation Computer Systems, 2022 - Elsevier
Abstract The Internet of Things (IoT) is an evolving paradigm that seeks to connect different
smart physical components for multi-domain modernization. To automatically manage and …

A survey of human-in-the-loop for machine learning

X Wu, L Xiao, Y Sun, J Zhang, T Ma, L He - Future Generation Computer …, 2022 - Elsevier
Abstract Machine learning has become the state-of-the-art technique for many tasks
including computer vision, natural language processing, speech processing tasks, etc …

A survey on the explainability of supervised machine learning

N Burkart, MF Huber - Journal of Artificial Intelligence Research, 2021 - jair.org
Predictions obtained by, eg, artificial neural networks have a high accuracy but humans
often perceive the models as black boxes. Insights about the decision making are mostly …

AI applications to medical images: From machine learning to deep learning

I Castiglioni, L Rundo, M Codari, G Di Leo, C Salvatore… - Physica medica, 2021 - Elsevier
Purpose Artificial intelligence (AI) models are playing an increasing role in biomedical
research and healthcare services. This review focuses on challenges points to be clarified …

[HTML][HTML] Enhancing user engagement: The role of gamification in mobile apps

P Bitrián, I Buil, S Catalán - Journal of Business Research, 2021 - Elsevier
Organizations are increasingly making use of gamification to enhance users' engagement
with their mobile apps. However, more research into the mechanisms that facilitate user …

[HTML][HTML] Towards multi-modal causability with graph neural networks enabling information fusion for explainable AI

A Holzinger, B Malle, A Saranti, B Pfeifer - Information Fusion, 2021 - Elsevier
AI is remarkably successful and outperforms human experts in certain tasks, even in
complex domains such as medicine. Humans on the other hand are experts at multi-modal …

A historical perspective of explainable Artificial Intelligence

R Confalonieri, L Coba, B Wagner… - … Reviews: Data Mining …, 2021 - Wiley Online Library
Abstract Explainability in Artificial Intelligence (AI) has been revived as a topic of active
research by the need of conveying safety and trust to users in the “how” and “why” of …

Causability and explainability of artificial intelligence in medicine

A Holzinger, G Langs, H Denk… - … Reviews: Data Mining …, 2019 - Wiley Online Library
Explainable artificial intelligence (AI) is attracting much interest in medicine. Technically, the
problem of explainability is as old as AI itself and classic AI represented comprehensible …

Explainable AI methods-a brief overview

A Holzinger, A Saranti, C Molnar, P Biecek… - … workshop on extending …, 2022 - Springer
Abstract Explainable Artificial Intelligence (xAI) is an established field with a vibrant
community that has developed a variety of very successful approaches to explain and …