Finite element approximation of eigenvalue problems

D Boffi - Acta numerica, 2010 - cambridge.org
We discuss the finite element approximation of eigenvalue problems associated with
compact operators. While the main emphasis is on symmetric problems, some comments …

Convergence and optimal complexity of adaptive finite element eigenvalue computations

X Dai, J Xu, A Zhou - Numerische Mathematik, 2008 - Springer
In this paper, an adaptive finite element method for elliptic eigenvalue problems is studied.
Both uniform convergence and optimal complexity of the adaptive finite element eigenvalue …

Guaranteed lower bounds for eigenvalues

C Carstensen, J Gedicke - Mathematics of Computation, 2014 - ams.org
This paper introduces fully computable two-sided bounds on the eigenvalues of the Laplace
operator on arbitrarily coarse meshes based on some approximation of the corresponding …

[HTML][HTML] A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem

D Mora, G Rivera, R Rodríguez - Computers & Mathematics with …, 2017 - Elsevier
The paper deals with the a posteriori error analysis of a virtual element method for the
Steklov eigenvalue problem. The virtual element method has the advantage of using …

Adaptive finite element approximations for Kohn--Sham models

H Chen, X Dai, X Gong, L He, A Zhou - Multiscale Modeling & Simulation, 2014 - SIAM
The Kohn--Sham model is a powerful, widely used approach for computation of ground state
electronic energies and densities in chemistry, materials science, biology, and nanoscience …

A convergent adaptive method for elliptic eigenvalue problems

S Giani, IG Graham - SIAM journal on numerical analysis, 2009 - SIAM
We prove the convergence of an adaptive linear finite element method for computing
eigenvalues and eigenfunctions of second-order symmetric elliptic partial differential …

Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations

E Cancès, G Dusson, Y Maday, B Stamm… - SIAM Journal on …, 2017 - SIAM
This paper derives a posteriori error estimates for conforming numerical approximations of
the Laplace eigenvalue problem with a homogeneous Dirichlet boundary condition. In …

A posteriori error estimates for the Steklov eigenvalue problem

MG Armentano, C Padra - Applied Numerical Mathematics, 2008 - Elsevier
In this paper we introduce and analyze an a posteriori error estimator for the linear finite
element approximations of the Steklov eigenvalue problem. We define an error estimator of …

A posteriori estimates for the Stokes eigenvalue problem

C Lovadina, M Lyly, R Stenberg - Numerical Methods for …, 2009 - Wiley Online Library
A posteriori estimates for the Stokes eigenvalue problem Page 1 A Posteriori Estimates for the
Stokes Eigenvalue Problem Carlo Lovadina,1,2 Mikko Lyly,3 Rolf Stenberg4 1Dipartimento di …

Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic pde problems

M Arioli, J Liesen, A Miçdlar, Z Strakoš - GAMM‐Mitteilungen, 2013 - Wiley Online Library
Abstract The Adaptive Finite Element Method (AFEM) for approximating solutions of PDE
boundary value and eigenvalue problems is a numerical scheme that automatically and …