Deep-learning seismology
SM Mousavi, GC Beroza - Science, 2022 - science.org
Seismic waves from earthquakes and other sources are used to infer the structure and
properties of Earth's interior. The availability of large-scale seismic datasets and the …
properties of Earth's interior. The availability of large-scale seismic datasets and the …
Machine learning in earthquake seismology
SM Mousavi, GC Beroza - Annual Review of Earth and …, 2023 - annualreviews.org
Machine learning (ML) is a collection of methods used to develop understanding and
predictive capability by learning relationships embedded in data. ML methods are becoming …
predictive capability by learning relationships embedded in data. ML methods are becoming …
Deep learning for time series anomaly detection: A survey
Time series anomaly detection is important for a wide range of research fields and
applications, including financial markets, economics, earth sciences, manufacturing, and …
applications, including financial markets, economics, earth sciences, manufacturing, and …
Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking
Earthquake signal detection and seismic phase picking are challenging tasks in the
processing of noisy data and the monitoring of microearthquakes. Here we present a global …
processing of noisy data and the monitoring of microearthquakes. Here we present a global …
[HTML][HTML] Deep learning for geological hazards analysis: Data, models, applications, and opportunities
As natural disasters are induced by geodynamic activities or abnormal changes in the
environment, geological hazards tend to wreak havoc on the environment and human …
environment, geological hazards tend to wreak havoc on the environment and human …
Plant disease detection and classification by deep learning
Plant diseases affect the growth of their respective species, therefore their early identification
is very important. Many Machine Learning (ML) models have been employed for the …
is very important. Many Machine Learning (ML) models have been employed for the …
Applications of artificial intelligence for disaster management
Natural hazards have the potential to cause catastrophic damage and significant
socioeconomic loss. The actual damage and loss observed in the recent decades has …
socioeconomic loss. The actual damage and loss observed in the recent decades has …
Machine learning for data-driven discovery in solid Earth geoscience
BACKGROUND The solid Earth, oceans, and atmosphere together form a complex
interacting geosystem. Processes relevant to understanding Earth's geosystem behavior …
interacting geosystem. Processes relevant to understanding Earth's geosystem behavior …
Hydraulic fracturing‐induced seismicity
Hydraulic fracturing (HF) is a technique that is used for extracting petroleum resources from
impermeable host rocks. In this process, fluid injected under high pressure causes fractures …
impermeable host rocks. In this process, fluid injected under high pressure causes fractures …
Machine learning in seismology: Turning data into insights
This article provides an overview of current applications of machine learning (ML) in
seismology. ML techniques are becoming increasingly widespread in seismology, with …
seismology. ML techniques are becoming increasingly widespread in seismology, with …