A comprehensive survey on pretrained foundation models: A history from bert to chatgpt

C Zhou, Q Li, C Li, J Yu, Y Liu, G Wang… - arXiv preprint arXiv …, 2023 - arxiv.org
Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks with different data modalities. A PFM (eg, BERT, ChatGPT, and GPT-4) is …

A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arXiv preprint arXiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

Parameter-efficient fine-tuning of large-scale pre-trained language models

N Ding, Y Qin, G Yang, F Wei, Z Yang, Y Su… - Nature Machine …, 2023 - nature.com
With the prevalence of pre-trained language models (PLMs) and the pre-training–fine-tuning
paradigm, it has been continuously shown that larger models tend to yield better …

Zhongjing: Enhancing the chinese medical capabilities of large language model through expert feedback and real-world multi-turn dialogue

S Yang, H Zhao, S Zhu, G Zhou, H Xu, Y Jia… - Proceedings of the AAAI …, 2024 - ojs.aaai.org
Abstract Recent advances in Large Language Models (LLMs) have achieved remarkable
breakthroughs in understanding and responding to user intents. However, their performance …

[HTML][HTML] Pre-trained language models and their applications

H Wang, J Li, H Wu, E Hovy, Y Sun - Engineering, 2023 - Elsevier
Pre-trained language models have achieved striking success in natural language
processing (NLP), leading to a paradigm shift from supervised learning to pre-training …

A systematic evaluation of large language models of code

FF Xu, U Alon, G Neubig, VJ Hellendoorn - Proceedings of the 6th ACM …, 2022 - dl.acm.org
Large language models (LMs) of code have recently shown tremendous promise in
completing code and synthesizing code from natural language descriptions. However, the …

Transformers in time series: A survey

Q Wen, T Zhou, C Zhang, W Chen, Z Ma, J Yan… - arXiv preprint arXiv …, 2022 - arxiv.org
Transformers have achieved superior performances in many tasks in natural language
processing and computer vision, which also triggered great interest in the time series …

Enhancing chat language models by scaling high-quality instructional conversations

N Ding, Y Chen, B Xu, Y Qin, Z Zheng, S Hu… - arXiv preprint arXiv …, 2023 - arxiv.org
Fine-tuning on instruction data has been widely validated as an effective practice for
implementing chat language models like ChatGPT. Scaling the diversity and quality of such …

Deep class-incremental learning: A survey

DW Zhou, QW Wang, ZH Qi, HJ Ye, DC Zhan… - arXiv preprint arXiv …, 2023 - arxiv.org
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …