A comprehensive survey of continual learning: theory, method and application
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
Radar-camera fusion for object detection and semantic segmentation in autonomous driving: A comprehensive review
Driven by deep learning techniques, perception technology in autonomous driving has
developed rapidly in recent years, enabling vehicles to accurately detect and interpret …
developed rapidly in recent years, enabling vehicles to accurately detect and interpret …
Grounded language-image pre-training
This paper presents a grounded language-image pre-training (GLIP) model for learning
object-level, language-aware, and semantic-rich visual representations. GLIP unifies object …
object-level, language-aware, and semantic-rich visual representations. GLIP unifies object …
Deep class-incremental learning: A survey
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
Open-vocabulary object detection via vision and language knowledge distillation
We aim at advancing open-vocabulary object detection, which detects objects described by
arbitrary text inputs. The fundamental challenge is the availability of training data. It is costly …
arbitrary text inputs. The fundamental challenge is the availability of training data. It is costly …
Bridging the gap between object and image-level representations for open-vocabulary detection
H Bangalath, M Maaz, MU Khattak… - Advances in …, 2022 - proceedings.neurips.cc
Existing open-vocabulary object detectors typically enlarge their vocabulary sizes by
leveraging different forms of weak supervision. This helps generalize to novel objects at …
leveraging different forms of weak supervision. This helps generalize to novel objects at …
Vos: Learning what you don't know by virtual outlier synthesis
Out-of-distribution (OOD) detection has received much attention lately due to its importance
in the safe deployment of neural networks. One of the key challenges is that models lack …
in the safe deployment of neural networks. One of the key challenges is that models lack …
Unicon: Combating label noise through uniform selection and contrastive learning
N Karim, MN Rizve, N Rahnavard… - Proceedings of the …, 2022 - openaccess.thecvf.com
Supervised deep learning methods require a large repository of annotated data; hence,
label noise is inevitable. Training with such noisy data negatively impacts the generalization …
label noise is inevitable. Training with such noisy data negatively impacts the generalization …
Ow-detr: Open-world detection transformer
Open-world object detection (OWOD) is a challenging computer vision problem, where the
task is to detect a known set of object categories while simultaneously identifying unknown …
task is to detect a known set of object categories while simultaneously identifying unknown …
Anomaly detection in autonomous driving: A survey
D Bogdoll, M Nitsche… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Nowadays, there are outstanding strides towards a future with autonomous vehicles on our
roads. While the perception of autonomous vehicles performs well under closed-set …
roads. While the perception of autonomous vehicles performs well under closed-set …