Conjugate plateau constructions in product spaces

J Castro-Infantes, JM Manzano, F Torralbo - New Trends in Geometric …, 2023 - Springer
This survey paper investigates, from a purely geometric point of view, Daniel's isometric
conjugation between minimal and constant mean curvature surfaces immersed in …

Minimal surfaces with positive genus and finite total curvature in ℍ2× ℝ

F Martín, R Mazzeo, MM Rodríguez - Geometry & Topology, 2014 - msp.org
We construct the first examples of complete, properly embedded minimal surfaces in ℍ 2× ℝ
with finite total curvature and positive genus. These are constructed by gluing copies of …

Simply Connected Minimal Surfaces with Finite Total Curvature in ℍ2 × ℝ

J Pyo, M Rodriguez - International Mathematics Research …, 2014 - ieeexplore.ieee.org
Laurent Hauswirth and Harold Rosenberg developed in 5 the theory of minimal surfaces
with finite total curvature in \mathbbH^2*\mathbbR. They showed that the total curvature of …

On the characterization of minimal surfaces with finite total curvature in and

L Hauswirth, A Menezes, M Rodríguez - Calculus of Variations and Partial …, 2019 - Springer
It is known that a complete immersed minimal surface with finite total curvature in H^ 2 * RH
2× R is proper, has finite topology and each one of its ends is asymptotic to a geodesic …

Genus one -surfaces with -ends in

J Castro-Infantes, JS Santiago - Revista Matemática Iberoamericana, 2024 - ems.press
We construct two different families of properly Alexandrov-immersed surfaces in H2 R with
constant mean curvature 0< H Ä 1= 2, genus one and k 2 ends (k D 2 only for one of these …

On doubly periodic minimal surfaces in with finite total curvature in the quotient space

L Hauswirth, A Menezes - Annali di Matematica Pura ed Applicata (1923-), 2016 - Springer
In this paper, we develop the theory of properly immersed minimal surfaces in the quotient
space (H^ 2 * R)/G,(H 2× R)/G, where G is a subgroup of isometries generated by a vertical …

GENUS

J Castro-Infantes, JM Manzano - … of the Institute of Mathematics of …, 2023 - cambridge.org
Abstract For each $ k\geq 3$, we construct a $1 $-parameter family of complete properly
Alexandrov-embedded minimal surfaces in the Riemannian product space $\mathbb {H} …

[PDF][PDF] Genus one minimal k− noids and saddle tower in H2× R

J Castro-Infantes, JM Manzano - arXiv preprint arXiv:2001.07028, 2020 - researchgate.net
arXiv:2001.07028v1 [math.DG] 20 Jan 2020 Page 1 GENUS ONE MININAL k-NOIDS AND
SADDLE TOWERS IN H2 × R JESÚS CASTRO-INFANTES AND JOSÉ M. MANZANO Abstract …

Genus 1 minimal k-noids and saddle towers in H-2 x R

J Castro Infantes - 2022 - digibug.ugr.es
For each k>= 3, we construct a 1-parameter family of complete properly Alexandrov-
embedded minimal surfaces in the Riemannian product space H-2 x R with genus 1 and k …

[PDF][PDF] Superficies de forma óptima

MR Pérez - 2024.bienalrsme.com
Las superficies que minimizan algún tipo de funcional de energıa aparecen de forma
natural en diferentes áreas. Este es el caso particular de las superficies mınimas, que son …