A survey on heterogeneous graph embedding: methods, techniques, applications and sources

X Wang, D Bo, C Shi, S Fan, Y Ye… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous graphs (HGs) also known as heterogeneous information networks have
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …

Knowledge graphs

A Hogan, E Blomqvist, M Cochez, C d'Amato… - ACM Computing …, 2021 - dl.acm.org
In this article, we provide a comprehensive introduction to knowledge graphs, which have
recently garnered significant attention from both industry and academia in scenarios that …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Graph learning: A survey

F Xia, K Sun, S Yu, A Aziz, L Wan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …

Financial time series forecasting with multi-modality graph neural network

D Cheng, F Yang, S Xiang, J Liu - Pattern Recognition, 2022 - Elsevier
Financial time series analysis plays a central role in hedging market risks and optimizing
investment decisions. This is a challenging task as the problems are always accompanied …

Heterogeneous network representation learning: A unified framework with survey and benchmark

C Yang, Y Xiao, Y Zhang, Y Sun… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Since real-world objects and their interactions are often multi-modal and multi-typed,
heterogeneous networks have been widely used as a more powerful, realistic, and generic …

Revisiting user mobility and social relationships in lbsns: a hypergraph embedding approach

D Yang, B Qu, J Yang, P Cudre-Mauroux - The world wide web …, 2019 - dl.acm.org
Location Based Social Networks (LBSNs) have been widely used as a primary data source
to study the impact of mobility and social relationships on each other. Traditional …

Sampling methods for efficient training of graph convolutional networks: A survey

X Liu, M Yan, L Deng, G Li, X Ye… - IEEE/CAA Journal of …, 2021 - ieeexplore.ieee.org
Graph convolutional networks (GCNs) have received significant attention from various
research fields due to the excellent performance in learning graph representations. Although …

Beyond triplets: hyper-relational knowledge graph embedding for link prediction

P Rosso, D Yang, P Cudré-Mauroux - Proceedings of the web …, 2020 - dl.acm.org
Knowledge Graph (KG) embeddings are a powerful tool for predicting missing links in KGs.
Existing techniques typically represent a KG as a set of triplets, where each triplet (h, r, t) …

Dynamic heterogeneous information network embedding with meta-path based proximity

X Wang, Y Lu, C Shi, R Wang, P Cui… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Heterogeneous information network (HIN) embedding aims at learning the low-dimensional
representation of nodes while preserving structure and semantics in a HIN. Existing methods …