Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries

Y Huang, L Lin, C Zhang, L Liu, Y Li, Z Qiao… - Advanced …, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation
energy storage systems due to their high energy density and cost‐effectiveness. However …

Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal–sulfur and selenium batteries

H Hao, T Hutter, BL Boyce, J Watt, P Liu… - Chemical …, 2022 - ACS Publications
Alkali metal batteries based on lithium, sodium, and potassium anodes and sulfur-based
cathodes are regarded as key for next-generation energy storage due to their high …

Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase

S Tu, B Zhang, Y Zhang, Z Chen, X Wang, R Zhan… - Nature Energy, 2023 - nature.com
Li+ desolvation in electrolytes and diffusion at the solid–electrolyte interphase (SEI) are two
determining steps that restrict the fast charging of graphite-based lithium-ion batteries. Here …

Advances in lithium–sulfur batteries: from academic research to commercial viability

Y Chen, T Wang, H Tian, D Su, Q Zhang… - Advanced …, 2021 - Wiley Online Library
Lithium‐ion batteries, which have revolutionized portable electronics over the past three
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …

Li-S batteries: challenges, achievements and opportunities

H Raza, S Bai, J Cheng, S Majumder, H Zhu… - Electrochemical Energy …, 2023 - Springer
To realize a low-carbon economy and sustainable energy supply, the development of
energy storage devices has aroused intensive attention. Lithium-sulfur (Li-S) batteries are …

A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium–sulfur batteries

C Li, Q Zhang, J Sheng, B Chen, R Gao… - Energy & …, 2022 - pubs.rsc.org
Solid-state lithium–sulfur (Li–S) batteries have been recognized as a competitive candidate
for next-generation energy storage systems due to their high energy density and safety …

Toward high-sulfur-content, high-performance lithium-sulfur batteries: Review of materials and technologies

F Zhao, J Xue, W Shao, H Yu, W Huang… - Journal of Energy …, 2023 - Elsevier
Lithium sulfur batteries (LSBs) are recognized as promising devices for developing next-
generation energy storage systems. In addition, they are attractive rechargeable battery …

Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission

AG Olabi, T Wilberforce, ET Sayed, AG Abo-Khalil… - Energy, 2022 - Elsevier
Sustainable energy storage medium has increased significantly in recent times. Air
contamination, which is widely considered to be harmful to an ecological niche, has fuelled …

Host materials anchoring polysulfides in Li–S batteries reviewed

L Zhou, DL Danilov, RA Eichel… - Advanced Energy …, 2021 - Wiley Online Library
Lithium–sulfur batteries (Li–S) have become a viable alternative to future energy storage
devices. The electrochemical reaction based on lithium and sulfur promises an extraordinary …

Protecting lithium metal anodes in lithium–sulfur batteries: A review

CX Bi, LP Hou, Z Li, M Zhao, XQ Zhang… - Energy Material …, 2023 - spj.science.org
Lithium–sulfur (Li–S) batteries are considered as one of the most promising next-generation
energy storage devices because of their ultrahigh theoretical energy density beyond lithium …