Motion planning for autonomous driving: The state of the art and future perspectives
Intelligent vehicles (IVs) have gained worldwide attention due to their increased
convenience, safety advantages, and potential commercial value. Despite predictions of …
convenience, safety advantages, and potential commercial value. Despite predictions of …
Federated learning review: Fundamentals, enabling technologies, and future applications
S Banabilah, M Aloqaily, E Alsayed, N Malik… - Information processing & …, 2022 - Elsevier
Federated Learning (FL) has been foundational in improving the performance of a wide
range of applications since it was first introduced by Google. Some of the most prominent …
range of applications since it was first introduced by Google. Some of the most prominent …
Diffusion policy: Visuomotor policy learning via action diffusion
This paper introduces Diffusion Policy, a new way of generating robot behavior by
representing a robot's visuomotor policy as a conditional denoising diffusion process. We …
representing a robot's visuomotor policy as a conditional denoising diffusion process. We …
Planning-oriented autonomous driving
Modern autonomous driving system is characterized as modular tasks in sequential order,
ie, perception, prediction, and planning. In order to perform a wide diversity of tasks and …
ie, perception, prediction, and planning. In order to perform a wide diversity of tasks and …
End-to-end autonomous driving: Challenges and frontiers
The autonomous driving community has witnessed a rapid growth in approaches that
embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle …
embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle …
Drivegpt4: Interpretable end-to-end autonomous driving via large language model
Multimodallarge language models (MLLMs) have emerged as a prominent area of interest
within the research community, given their proficiency in handling and reasoning with non …
within the research community, given their proficiency in handling and reasoning with non …
Gpt-driver: Learning to drive with gpt
We present a simple yet effective approach that can transform the OpenAI GPT-3.5 model
into a reliable motion planner for autonomous vehicles. Motion planning is a core challenge …
into a reliable motion planner for autonomous vehicles. Motion planning is a core challenge …
Octo: An open-source generalist robot policy
Large policies pretrained on diverse robot datasets have the potential to transform robotic
learning: instead of training new policies from scratch, such generalist robot policies may be …
learning: instead of training new policies from scratch, such generalist robot policies may be …
Video pretraining (vpt): Learning to act by watching unlabeled online videos
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …
training models with broad, general capabilities for text, images, and other modalities …
Recent advances in decision trees: An updated survey
VG Costa, CE Pedreira - Artificial Intelligence Review, 2023 - Springer
Abstract Decision Trees (DTs) are predictive models in supervised learning, known not only
for their unquestionable utility in a wide range of applications but also for their interpretability …
for their unquestionable utility in a wide range of applications but also for their interpretability …