A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises

SK Zhou, H Greenspan, C Davatzikos… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …

Vision Transformers in medical computer vision—A contemplative retrospection

A Parvaiz, MA Khalid, R Zafar, H Ameer, M Ali… - … Applications of Artificial …, 2023 - Elsevier
Abstract Vision Transformers (ViTs), with the magnificent potential to unravel the information
contained within images, have evolved as one of the most contemporary and dominant …

Amos: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation

Y Ji, H Bai, C Ge, J Yang, Y Zhu… - Advances in neural …, 2022 - proceedings.neurips.cc
Despite the considerable progress in automatic abdominal multi-organ segmentation from
CT/MRI scans in recent years, a comprehensive evaluation of the models' capabilities is …

Abdomenct-1k: Is abdominal organ segmentation a solved problem?

J Ma, Y Zhang, S Gu, C Zhu, C Ge… - … on Pattern Analysis …, 2021 - ieeexplore.ieee.org
With the unprecedented developments in deep learning, automatic segmentation of main
abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have …

3D deep learning on medical images: a review

SP Singh, L Wang, S Gupta, H Goli, P Padmanabhan… - Sensors, 2020 - mdpi.com
The rapid advancements in machine learning, graphics processing technologies and the
availability of medical imaging data have led to a rapid increase in the use of deep learning …

A review of deep learning based methods for medical image multi-organ segmentation

Y Fu, Y Lei, T Wang, WJ Curran, T Liu, X Yang - Physica Medica, 2021 - Elsevier
Deep learning has revolutionized image processing and achieved the-state-of-art
performance in many medical image segmentation tasks. Many deep learning-based …

Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets

B Billot, C Magdamo, Y Cheng… - Proceedings of the …, 2023 - National Acad Sciences
Every year, millions of brain MRI scans are acquired in hospitals, which is a figure
considerably larger than the size of any research dataset. Therefore, the ability to analyze …

M3T: three-dimensional Medical image classifier using Multi-plane and Multi-slice Transformer

J Jang, D Hwang - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
In this study, we propose a three-dimensional Medical image classifier using Multi-plane
and Multi-slice Transformer (M3T) network to classify Alzheimer's disease (AD) in 3D MRI …

Advances in auto-segmentation

CE Cardenas, J Yang, BM Anderson, LE Court… - Seminars in radiation …, 2019 - Elsevier
Manual image segmentation is a time-consuming task routinely performed in radiotherapy to
identify each patient's targets and anatomical structures. The efficacy and safety of the …

Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction

X Fang, P Yan - IEEE Transactions on Medical Imaging, 2020 - ieeexplore.ieee.org
Shortage of fully annotated datasets has been a limiting factor in developing deep learning
based image segmentation algorithms and the problem becomes more pronounced in multi …