A primer on Carnot groups: homogenous groups, Carnot-Carathéodory spaces, and regularity of their isometries
E Le Donne - Analysis and Geometry in Metric Spaces, 2017 - degruyter.com
Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups
equipped with a path distance that is invariant by left-translations of the group and admit …
equipped with a path distance that is invariant by left-translations of the group and admit …
Conformality and Q-harmonicity in sub-Riemannian manifolds
We establish regularity of conformal maps between sub-Riemannian manifolds from
regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, ie, 1 …
regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, ie, 1 …
From homogeneous metric spaces to Lie groups
We study homogeneous metric spaces, by which we mean connected, locally compact
metric spaces whose isometry group acts transitively. After a review of some classical …
metric spaces whose isometry group acts transitively. After a review of some classical …
A primer on Carnot groups: homogenous groups, CC spaces, and regularity of their isometries
EL Donne - arXiv preprint arXiv:1604.08579, 2016 - arxiv.org
Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups
equipped with a path distance that is invariant by left-translations of the group and admit …
equipped with a path distance that is invariant by left-translations of the group and admit …
Hyperbolicity of the sub-Riemannian affine-additive group
ZM Balogh, E Bubani, ID Platis - arXiv preprint arXiv:2407.04635, 2024 - arxiv.org
We consider the affine-additive group as a metric measure space with a canonical left-
invariant measure and a left-invariant sub-Riemannian metric. We prove that this metric …
invariant measure and a left-invariant sub-Riemannian metric. We prove that this metric …
Heisenberg quasiregular ellipticity
K Fässler, A Lukyanenko, JT Tyson - arXiv preprint arXiv:1609.07749, 2019 - ems.press
Following the Euclidean results of Varopoulos and Pankka–Rajala, we provide a necessary
topological condition for a sub-Riemannian 3-manifold M to admit a nonconstant …
topological condition for a sub-Riemannian 3-manifold M to admit a nonconstant …
Свойство морфизма субэллиптических уравнений на группе поворотов-сдвигов
МВ Трямкин - Сибирский математический журнал, 2015 - mathnet.ru
Устанавливается свойство морфизма субэллиптических уравнений для отображений с
ограниченным искажением, область определения которых лежит в группе поворотов …
ограниченным искажением, область определения которых лежит в группе поворотов …
On uniform large-scale volume growth for the Carnot–Carathéodory metric on unbounded model hypersurfaces in ℂ2
E Dlugie, A Peterson - Involve, a Journal of Mathematics, 2017 - msp.org
We consider the rate of volume growth of large Carnot–Carathéodory metric balls on a class
of unbounded model hypersurfaces in ℂ 2. When the hypersurface has a uniform global …
of unbounded model hypersurfaces in ℂ 2. When the hypersurface has a uniform global …
The morphism property of subelliptic equations on the roto-translation group
MV Tryamkin - Siberian Mathematical Journal, 2015 - Springer
We establish the morphism property of subelliptic equations for mappings with bounded
distortion whose domain lies in the roto-translation group and whose range is the …
distortion whose domain lies in the roto-translation group and whose range is the …
From homogeneous metric spaces to Lie groups
MG Cowling, V Kivioja… - Comptes …, 2024 - comptes-rendus.academie-sciences …
Nous étudions les espaces métriques homogènes, c'est-à-dire, les espaces métriques
connexes et localement compacts dont le groupe d'isométries agit transitivement. Après …
connexes et localement compacts dont le groupe d'isométries agit transitivement. Après …