[HTML][HTML] A survey of transformers
Transformers have achieved great success in many artificial intelligence fields, such as
natural language processing, computer vision, and audio processing. Therefore, it is natural …
natural language processing, computer vision, and audio processing. Therefore, it is natural …
Transformers in time-series analysis: A tutorial
Transformer architectures have widespread applications, particularly in Natural Language
Processing and Computer Vision. Recently, Transformers have been employed in various …
Processing and Computer Vision. Recently, Transformers have been employed in various …
A survey of large language models
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …
Scaling up your kernels to 31x31: Revisiting large kernel design in cnns
We revisit large kernel design in modern convolutional neural networks (CNNs). Inspired by
recent advances in vision transformers (ViTs), in this paper, we demonstrate that using a few …
recent advances in vision transformers (ViTs), in this paper, we demonstrate that using a few …
Diffusion policy: Visuomotor policy learning via action diffusion
This paper introduces Diffusion Policy, a new way of generating robot behavior by
representing a robot's visuomotor policy as a conditional denoising diffusion process. We …
representing a robot's visuomotor policy as a conditional denoising diffusion process. We …
Fine-tuning language models with just forward passes
Fine-tuning language models (LMs) has yielded success on diverse downstream tasks, but
as LMs grow in size, backpropagation requires a prohibitively large amount of memory …
as LMs grow in size, backpropagation requires a prohibitively large amount of memory …
Actionformer: Localizing moments of actions with transformers
Self-attention based Transformer models have demonstrated impressive results for image
classification and object detection, and more recently for video understanding. Inspired by …
classification and object detection, and more recently for video understanding. Inspired by …
High-resolution de novo structure prediction from primary sequence
Recent breakthroughs have used deep learning to exploit evolutionary information in
multiple sequence alignments (MSAs) to accurately predict protein structures. However …
multiple sequence alignments (MSAs) to accurately predict protein structures. However …
H2o: Heavy-hitter oracle for efficient generative inference of large language models
Abstract Large Language Models (LLMs), despite their recent impressive accomplishments,
are notably cost-prohibitive to deploy, particularly for applications involving long-content …
are notably cost-prohibitive to deploy, particularly for applications involving long-content …
Are transformers more robust than cnns?
Transformer emerges as a powerful tool for visual recognition. In addition to demonstrating
competitive performance on a broad range of visual benchmarks, recent works also argue …
competitive performance on a broad range of visual benchmarks, recent works also argue …