A survey on deep learning and its applications

S Dong, P Wang, K Abbas - Computer Science Review, 2021 - Elsevier
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …

Offline reinforcement learning: Tutorial, review, and perspectives on open problems

S Levine, A Kumar, G Tucker, J Fu - arXiv preprint arXiv:2005.01643, 2020 - arxiv.org
In this tutorial article, we aim to provide the reader with the conceptual tools needed to get
started on research on offline reinforcement learning algorithms: reinforcement learning …

Planning with diffusion for flexible behavior synthesis

M Janner, Y Du, JB Tenenbaum, S Levine - arXiv preprint arXiv …, 2022 - arxiv.org
Model-based reinforcement learning methods often use learning only for the purpose of
estimating an approximate dynamics model, offloading the rest of the decision-making work …

Combinatorial optimization and reasoning with graph neural networks

Q Cappart, D Chételat, EB Khalil, A Lodi… - Journal of Machine …, 2023 - jmlr.org
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …

Recent advances in deep learning based dialogue systems: A systematic survey

J Ni, T Young, V Pandelea, F Xue… - Artificial intelligence review, 2023 - Springer
Dialogue systems are a popular natural language processing (NLP) task as it is promising in
real-life applications. It is also a complicated task since many NLP tasks deserving study are …

Mopo: Model-based offline policy optimization

T Yu, G Thomas, L Yu, S Ermon… - Advances in …, 2020 - proceedings.neurips.cc
Offline reinforcement learning (RL) refers to the problem of learning policies entirely from a
batch of previously collected data. This problem setting is compelling, because it offers the …

Mastering atari, go, chess and shogi by planning with a learned model

J Schrittwieser, I Antonoglou, T Hubert, K Simonyan… - Nature, 2020 - nature.com
Constructing agents with planning capabilities has long been one of the main challenges in
the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge …

When to trust your model: Model-based policy optimization

M Janner, J Fu, M Zhang… - Advances in neural …, 2019 - proceedings.neurips.cc
Designing effective model-based reinforcement learning algorithms is difficult because the
ease of data generation must be weighed against the bias of model-generated data. In this …

An introduction to deep reinforcement learning

V François-Lavet, P Henderson, R Islam… - … and Trends® in …, 2018 - nowpublishers.com
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …

Model-based reinforcement learning: A survey

TM Moerland, J Broekens, A Plaat… - … and Trends® in …, 2023 - nowpublishers.com
Sequential decision making, commonly formalized as Markov Decision Process (MDP)
optimization, is an important challenge in artificial intelligence. Two key approaches to this …