On the Morse–Sard property and level sets of Sobolev and BV functions
J Bourgain, J Kristensen, MV Korobkov - Revista Matemática …, 2013 - ems.press
We establish Luzin N and Morse–Sard properties for BV2 functions defined on open
domains in the plane. Using these results we prove that almost all level sets are finite …
domains in the plane. Using these results we prove that almost all level sets are finite …
On the Morse–Sard property and level sets of Wn,1 Sobolev functions on ℝn
J Bourgain, MV Korobkov, J Kristensen - Journal für die reine und …, 2015 - degruyter.com
We establish Luzin N and Morse–Sard properties for functions from the Sobolev space W n,
1 (ℝ n). Using these results we prove that almost all level sets are finite disjoint unions of C 1 …
1 (ℝ n). Using these results we prove that almost all level sets are finite disjoint unions of C 1 …
On the Morse-Sard theorem for the sharp case of Sobolev mappings
MV Korobkov, J Kristensen - Indiana University Mathematics Journal, 2014 - JSTOR
We establish Luzin N-and Morse-Sard properties for mappings ν: ℝn→ ℝm of the Sobolev-
Lorentz class W_p,1^k with k= n–m+ 1 and p= n/k (this is the sharp case that guaranties the …
Lorentz class W_p,1^k with k= n–m+ 1 and p= n/k (this is the sharp case that guaranties the …
A bridge between Dubovitskiĭ–Federer theorems and the coarea formula
P Hajłasz, MV Korobkov, J Kristensen - Journal of Functional Analysis, 2017 - Elsevier
Abstract The Morse–Sard theorem requires that a mapping v: R n→ R m is of class C k, k>
max(n− m, 0). In 1957 Dubovitskiĭ generalized this result by proving that almost all level …
max(n− m, 0). In 1957 Dubovitskiĭ generalized this result by proving that almost all level …
[HTML][HTML] On some universal Morse–Sard type theorems
A Ferone, MV Korobkov, A Roviello - Journal de Mathématiques Pures et …, 2020 - Elsevier
Abstract The classical Morse–Sard theorem claims that for a mapping v: R n→ R m+ 1 of
class C k the measure of critical values v (Z v, m) is zero under condition k≥ n− m. Here the …
class C k the measure of critical values v (Z v, m) is zero under condition k≥ n− m. Here the …
Morse--Sard theorem and Luzin -property: a new synthesis result for Sobolev spaces
A Ferone, MV Korobkov, A Roviello - arXiv preprint arXiv:1809.00423, 2018 - arxiv.org
For a regular (in a sense) mapping $ v:\mathbb {R}^ n\to\mathbb {R}^ d $ we study the
following problem:{\sl let $ S $ be a subset of $ m $-critical a set $\tilde Z_ {v, m}=\{{\rm …
following problem:{\sl let $ S $ be a subset of $ m $-critical a set $\tilde Z_ {v, m}=\{{\rm …
[PDF][PDF] THE TRACE THEOREM, THE LUZIN N-AND MORSE-SARD PROPERTIES FOR THE SHARP CASE OF SOBOLEV-LORENTZ MAPPINGS
J Kristensen, MV Korobkov - 2015 - 129.67.184.128
We prove Luzin N-and Morse–Sard properties for mappings v: Rn→ Rd of the Sobolev–
Lorentz class Wk p, 1, p= nk (this is the sharp case that guarantees the continuity of …
Lorentz class Wk p, 1, p= nk (this is the sharp case that guarantees the continuity of …
A bridge between Dubovitskiĭ-Federer theorems and the coarea formula
J Kristensen, P Hajlasz, M Korobkov - Journal of Functional Analysis, 2016 - ora.ox.ac.uk
The Morse-Sard theorem requires that a mapping v: ℝn→ ℝm is of class Ck, k> max (nm, 0).
In 1957 Dubovitskiĭ generalized this result by proving that almost all level sets for a Ck …
In 1957 Dubovitskiĭ generalized this result by proving that almost all level sets for a Ck …
On the Morse–Sard property and level sets of Wn, 1 Sobolev functions on ℝn
J Bourgain, M Korobkov, J Kristensen - Journal für die reine und …, 2013 - ora.ox.ac.uk
We establish Luzin N and Morse–Sard properties for functions from the Sobolev space Wn,
1 (Rn). Using these results we prove that almost all level sets are finite disjoint unions of C1 …
1 (Rn). Using these results we prove that almost all level sets are finite disjoint unions of C1 …
[PDF][PDF] Articoli accettati
E PUBBLICAZIONI - Appl. Anal, 2004 - paola-trebeschi.unibs.it
Pubblicazioni Page 1 ELENCO PUBBLICAZIONI Pubblicazioni Articoli accettati [1] P. Secchi,
A. Morando, P. Trebeschi Hyperbolic problems with characteristic boundary J. Necas …
A. Morando, P. Trebeschi Hyperbolic problems with characteristic boundary J. Necas …