Evolution of semantic similarity—a survey

D Chandrasekaran, V Mago - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
Estimating the semantic similarity between text data is one of the challenging and open
research problems in the field of Natural Language Processing (NLP). The versatility of …

Pre-trained language models in biomedical domain: A systematic survey

B Wang, Q Xie, J Pei, Z Chen, P Tiwari, Z Li… - ACM Computing …, 2023 - dl.acm.org
Pre-trained language models (PLMs) have been the de facto paradigm for most natural
language processing tasks. This also benefits the biomedical domain: researchers from …

Linkbert: Pretraining language models with document links

M Yasunaga, J Leskovec, P Liang - arXiv preprint arXiv:2203.15827, 2022 - arxiv.org
Language model (LM) pretraining can learn various knowledge from text corpora, helping
downstream tasks. However, existing methods such as BERT model a single document, and …

Domain-specific language model pretraining for biomedical natural language processing

Y Gu, R Tinn, H Cheng, M Lucas, N Usuyama… - ACM Transactions on …, 2021 - dl.acm.org
Pretraining large neural language models, such as BERT, has led to impressive gains on
many natural language processing (NLP) tasks. However, most pretraining efforts focus on …

Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets

Y Peng, S Yan, Z Lu - arXiv preprint arXiv:1906.05474, 2019 - arxiv.org
Inspired by the success of the General Language Understanding Evaluation benchmark, we
introduce the Biomedical Language Understanding Evaluation (BLUE) benchmark to …

MedCPT: Contrastive Pre-trained Transformers with large-scale PubMed search logs for zero-shot biomedical information retrieval

Q Jin, W Kim, Q Chen, DC Comeau, L Yeganova… - …, 2023 - academic.oup.com
Motivation Information retrieval (IR) is essential in biomedical knowledge acquisition and
clinical decision support. While recent progress has shown that language model encoders …

Neural natural language processing for unstructured data in electronic health records: a review

I Li, J Pan, J Goldwasser, N Verma, WP Wong… - Computer Science …, 2022 - Elsevier
Electronic health records (EHRs), digital collections of patient healthcare events and
observations, are ubiquitous in medicine and critical to healthcare delivery, operations, and …

Are large language models ready for healthcare? a comparative study on clinical language understanding

Y Wang, Y Zhao, L Petzold - Machine Learning for …, 2023 - proceedings.mlr.press
Large language models (LLMs) have made significant progress in various domains,
including healthcare. However, the specialized nature of clinical language understanding …

[HTML][HTML] AMMU: a survey of transformer-based biomedical pretrained language models

KS Kalyan, A Rajasekharan, S Sangeetha - Journal of biomedical …, 2022 - Elsevier
Transformer-based pretrained language models (PLMs) have started a new era in modern
natural language processing (NLP). These models combine the power of transformers …

Fine-tuning large neural language models for biomedical natural language processing

R Tinn, H Cheng, Y Gu, N Usuyama, X Liu, T Naumann… - Patterns, 2023 - cell.com
Large neural language models have transformed modern natural language processing
(NLP) applications. However, fine-tuning such models for specific tasks remains challenging …