Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta–brain axis

J Mao, A Jain, ND Denslow, MZ Nouri… - Proceedings of the …, 2020 - National Acad Sciences
J Mao, A Jain, ND Denslow, MZ Nouri, S Chen, T Wang, N Zhu, J Koh, SJ Sarma
Proceedings of the National Academy of Sciences, 2020National Acad Sciences
Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting
chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert
bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 μg/kg body
weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals
until embryonic day 12.5, whereupon placental samples were collected and compared with
unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes …
Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 μg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+ GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+ GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental–brain axis of the developing mouse fetus.
National Acad Sciences
以上显示的是最相近的搜索结果。 查看全部搜索结果