[HTML][HTML] Dual repression of endocytic players by ESCC microRNAs and the Polycomb complex regulates mouse embryonic stem cell pluripotency

RD Mote, G Mahajan, A Padmanabhan, R Ambati… - Scientific Reports, 2017 - nature.com
RD Mote, G Mahajan, A Padmanabhan, R Ambati, D Subramanyam
Scientific Reports, 2017nature.com
Cell fate determination in the early mammalian embryo is regulated by multiple
mechanisms. Recently, genes involved in vesicular trafficking have been shown to play an
important role in cell fate choice, although the regulation of their expression remains poorly
understood. Here we demonstrate for the first time that multiple endocytosis associated
genes (EAGs) are repressed through a novel, dual mechanism in mouse embryonic stem
cells (mESCs). This involves the action of the Polycomb Repressive Complex, PRC2, as well …
Abstract
Cell fate determination in the early mammalian embryo is regulated by multiple mechanisms. Recently, genes involved in vesicular trafficking have been shown to play an important role in cell fate choice, although the regulation of their expression remains poorly understood. Here we demonstrate for the first time that multiple endocytosis associated genes (EAGs) are repressed through a novel, dual mechanism in mouse embryonic stem cells (mESCs). This involves the action of the Polycomb Repressive Complex, PRC2, as well as post-transcriptional regulation by the ESC-specific cell cycle-regulating (ESCC) family of microRNAs. This repression is relieved upon differentiation. Forced expression of EAGs in mESCs results in a decrease in pluripotency, highlighting the importance of dual repression in cell fate regulation. We propose that endocytosis is critical for cell fate choice, and dual repression may function to tightly regulate levels of endocytic genes.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果