[HTML][HTML] Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy

R Genthial, E Beaurepaire, MC Schanne-Klein… - Scientific Reports, 2017 - nature.com
R Genthial, E Beaurepaire, MC Schanne-Klein, F Peyrin, D Farlay, C Olivier, Y Bala
Scientific Reports, 2017nature.com
Interfaces provide the structural basis of essential bone functions. In the hierarchical
structure of bone tissue, heterogeneities such as porosity or boundaries are found at scales
ranging from nanometers to millimeters, all of which contributing to macroscopic properties.
To date, however, the complexity or limitations of currently used imaging methods restrict our
understanding of this functional integration. Here we address this issue using label-free third-
harmonic generation (THG) microscopy. We find that the porous lacuno-canalicular network …
Abstract
Interfaces provide the structural basis of essential bone functions. In the hierarchical structure of bone tissue, heterogeneities such as porosity or boundaries are found at scales ranging from nanometers to millimeters, all of which contributing to macroscopic properties. To date, however, the complexity or limitations of currently used imaging methods restrict our understanding of this functional integration. Here we address this issue using label-free third-harmonic generation (THG) microscopy. We find that the porous lacuno-canalicular network (LCN), revealing the geometry of osteocytes in the bone matrix, can be directly visualized in 3D with submicron precision over millimetric fields of view compatible with histology. THG also reveals interfaces delineating volumes formed at successive remodeling stages. Finally, we show that the structure of the LCN can be analyzed in relation with that of the extracellular matrix and larger-scale structures by simultaneously recording THG and second-harmonic generation (SHG) signals relating to the collagen organization.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果