Zalcitabine: an update of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in the management of HIV infection

JC Adkins, DH Peters, D Faulds - Drugs, 1997 - Springer
JC Adkins, DH Peters, D Faulds
Drugs, 1997Springer
Synopsis Zalcitabine is a dideoxynucleoside antiretroviral agent that is phosphorylated to
the active metabolite 2′, 3′-dideoxycytidine 5′-triphosphate (ddCTP) within both
uninfected and HIV-infected cells. At therapeutic concentrations, ddCTP inhibits HIV
replication by inhibiting the enzynie reverse transcriptase and terminating elongation of the
proviral DNA chain. The results of 3 large pivotal trials comparing zidovudine monotherapy
with combination therapy have now clearly established that zalcitabine plus zidovudine …
Synopsis
Zalcitabine is a dideoxynucleoside antiretroviral agent that is phosphorylated to the active metabolite 2′,3′-dideoxycytidine 5′-triphosphate (ddCTP) within both uninfected and HIV-infected cells. At therapeutic concentrations, ddCTP inhibits HIV replication by inhibiting the enzynie reverse transcriptase and terminating elongation of the proviral DNA chain.
The results of 3 large pivotal trials comparing zidovudine monotherapy with combination therapy have now clearly established that zalcitabine plus zidovudine combination therapy improves survival, delays disease progression and is associated with an improvement in viral load and CD4+ cell count compared with zidovudine monotherapy. More recently, clinical end-point and surrogate marker data have established the efficacy of zalcitabine in combination with the protease inhibitor saquinavir in zidovudine-experienced patients. Other studies have demonstrated the utility of zalcitabine in combination with ritonavir and the nucleoside analogue lamivudine. Importantly, early use of zalcitabine in the treatment sequence does not appear to limit the therapeutic efficacy of subsequent therapy with other nucleoside analogues such as lamivudine.
Peripheral neuropathy is the most frequent dose-limiting adverse effect associated with zalcitabine therapy and is generally reversible on discontinuation of treatment. Stomatitis and mouth ulcers may occur frequently with zalcitabine therapy but tend to resolve with continuing treatment. Haematological toxicity, which is a common adverse effect associated with zidovudine, is reported infrequently with zalcitabine. Overall, combination therapy with zalcitabine plus zidovudine or saquinavir has been shown to have a tolerability profile comparable to that of either agent alone, although treatment with zidovudine plus zalcitabine was associated with a significant increase in the incidence of haematological toxicity compared with zidovudine monotherapy in one study.
Therefore, current data suggest that zalcitabine is a useful antiretroviral agent for inclusion as a component of initial double combination therapy with zidovudine or as part of triple combination therapy including zidovudine plus a protease inhibitor in the management of patients with HIV infection.
Pharmacodynamic Properties
Zalcitabine is phosphorylated to the active antiviral compound 2′,3′-dideoxy-cytidine 5′-triphosphate (ddCTP) within both uninfected and HIV-infected cells. ddCTP inhibits HIV replication by inhibition of the enzyme reverse transcriptase and termination of viral DNA chain elongation. In both these roles ddCTP competes with endogenous deoxycytidine triphosphate. Zalcitabine has demonstrated significant antiretroviral activity against HIV-1 in vitro. In addition, synergistic antiretroviral activity has been reported for zalcitabine in combination with several other antiretroviral agents including zidovudine, stavudine and saquinavir.
Resistance to zalcitabine usually arises from a series of mutations within the HIV pol gene and develops less frequently than resistance to zidovudine. Cross-resistance between zidovudine and zalcitabine has been described. The activation state of the target cell, whether the cell under investigation is acutely or chronically infected with HIV, and/or the levels of intracellular phosphorylating enzymes may also contribute to variation in the antiviral activity of zalcitabine between cell lines.
In vitro investigations suggest that zalcitabine-induced inhibition of an enzyme responsible for the synthesis of mitochondrial DNA (DNA polymerase γ …
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果